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Abstract— This paper introduces DLSTM-MSF, a distributed approach 

designed to address the challenge of demand forecasting in multimedia 

streaming workloads. DLSTM-MSF leverages the power of multi-LSTM 

networks, each tailored to predict data demand for a specific type of 

multimedia streaming workload. The central problem addressed in this 

research is the accurate prediction of workload demand in a dynamic and 

diverse multimedia streaming environment. To achieve specialization, the 

training time series set for each LSTM network comprises examples with 

targets belonging exclusively to the workload type it is designed to predict. 

This specialization ensures that each LSTM network becomes proficient at 

capturing the unique demand patterns associated with its designated workload 

category. The methodology of the proposed approach is based on building the 

best forecasting model for each multimedia streaming workload type by 

exploring various combinations of LSTM hyper-parameters using the grid 

search method. This enables the proposed approach to effectively capture 

nonlinear patterns in time series data. Furthermore, the implementation of 

DLSTM-MSF incorporates Apache Kafka for online demand prediction, 

utilizing the best-developed model for each workload type. Experimental 

evaluations of DLSTM-MSF compare the performance of two ensemble-

learning LSTM models (Ensemble V1 and Ensemble V2) with a single LSTM 

model. The results unequivocally highlight the superiority of Ensemble V1, 

with reductions of 71.85% and 74.88% in RMSE and MAE values, 

respectively, compared to the single LSTM model. 

Index Terms— Multimedia streaming, LSTM, Ensemble learning, Forecasting, Workload    

Demand, Big data. 

I. INTRODUCTION 

All sizes of businesses now employ cloud computing extensively. Although there is no 

denying its advantages, cloud resources can be expensive, especially when they are 

provisioned with a sufficient safety buffer to ensure system availability during unplanned 

situations. Severe costs can be entailed due to the unrestricted scaling of the cloud 

resources; businesses are over budget on the public cloud by 13%, according to Flexera 

2022 State of the Cloud Report, and they anticipate a further rise in cloud spending of 29% 

over the following 12 months that suggests understanding forecasting and cost optimization 

is more important than ever. Access to auto-scaling components integrated into cloud 

platforms is available from all major cloud computing providers, including Amazon 

(Amazon Web Services), Google (Google Cloud Platform), and Microsoft (Azure) There 
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are also commercial, cloud provider-agnostic applications created to maximize the use of 

cloud resources. Similarly, there are other researches on this subject that can be found in the 

literature [1]–[3]. The typical strategy for resource optimization [4], [5] concentrates on 

formalizing the system model and attempting to classify system load. This can lead to poor 

efficiency when dealing with real-world data that contains random anomalies such as big 

data streaming [6], [7]. The workload demand for multimedia streaming is one of the more 

crucial issues in big data streaming. It imposes the dealing with a multi-non-linear time 

series to provide an accurate demand forecasting impacting the resource utilization. 

All planning activities heavily rely on demand forecasts, making demand prediction a 

crucial aspect of predictive analytics for anticipating future demand. Accurate demand 

forecasting is essential to ensure appropriate supply chain management [8]. However, 

traditional demand forecasting techniques have faced challenges in accurately predicting 

demand due to intense competition across industries.  

The development of workload demand forecasting based on multimedia streaming meaning the 

deal with the big data streaming characteristics. The main distinctive characteristic of big data in this 

context is Variety, which means that data is collected in various formats, such as blog entries, videos, 

text, images, and audio, often referred to as unstructured data. This type of data poses additional 

requirements that traditional solutions may not adequately address [8].  

Furthermore, different workloads, areas, or domains require various resources. Cloud resources 

vary in terms of memory size, processor speed, etc. Therefore, resource allocation algorithms need to 

efficiently utilize these resources while adhering to service-level agreements (SLAs). To ensure the 

availability of the services, no machine should be overloaded or underloaded. It is essential to balance 

the load to optimize the performance parameters of the allocation process. Two types of resource 

allocation implementations exist: static and dynamic. However, due to the stochastic nature of the big 

data environment and the need for heterogeneous resources, static resource allocation has limitations 

[9].  

Dynamic resource provisioning is a challenging problem in the scheduling of big data applications. 

However, workload prediction plays a crucial role in this dynamic resource allocation process. 

Therefore, the prediction of workload and job estimation has garnered significant attention from 

researchers and data scientists [10]–[12]. Moreover, much of the existing research on workload 

forecasting relies on historical data. In the context of big data streaming, the characteristics of incoming 

data streams are unpredictable due to the stochastic nature of the data sources, and the user cannot 

determine the requirements in advance. This unpredictability makes it challenging to predict upcoming 

workload patterns in real-time and forecast the demand to allocate appropriate resources. These 

challenges serve as the primary motivation for the research presented in this paper. 

The main objectives of the present work are as follows: 

A- Propose multi-forecasting models that can effectively address the heterogeneity 

issues of multimedia streaming. These models will automatically forecast the 

workload demand based on the elementary types of multimedia, such as image, 

video, audio, and text, using the LSTM network. 

B- Prepare the time series data that is generated from the deployment of the 

LSDStrategy [13]. This data will be used for training and evaluating the proposed 

multi-forecasting models. 

C- Optimize the hyper-parameters of the multi-LSTM networks and select the most 

suitable configuration for each workload type. This step aims to overcome the 

challenges of obtaining accurate forecasting models for nonlinear and non-

stationary demand time series data. 
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D- Deploy the developed models in a distributed environment to ensure scalability and 

reliability in handling data streaming. 

The present work achieved the following contributions: 

 It introduces a distributed approach called DLSTM-MS, which consists of multi-

forecasting models capable of accurately predicting workload patterns based on 

different types of multimedia streaming. 

 It presents data preprocessing techniques for the time series data generated from 

[13], which is essential for training the forecasting models. 

 It fine-tunes the multi-LSTM networks by selecting hyper-parameters that strike a 

balance between accuracy and model complexity. 

 The work deploys four workers, ensuring scalability and availability while achieving 

impressive RMSE and MAE values of 71.85% and 74.88% lower than that of the 

simple LSTM networks respectively. This deployment addresses challenges related 

to centralized deployment when dealing with real-world data, such as high memory 

consumption, long processing and analysis times, computational performance 

degradation, and significant I/O overhead. 

 

II. BACKGROUND RESEARCH 
 

In this section, a comprehensive review of the recent literature surveyed the current 

state of the art for workload demand forecasting. 

 For applications based on forecasting, most earlier techniques based on 

computational intelligence and statistical techniques are broadly accepted.  

Fig. 1 shows the most common time series forecasting methods. These models come in various 

forms, with each model specialized in representing a particular type of nonlinearity. Consequently, 

finding an appropriate model for time series forecasting becomes more challenging due to the diverse 

range of nonlinear patterns [14]. Although it is cost-effective, aggressive optimization degrades the 

Quality of Service (QoS) [15], [16].   

 

 

FIG. 1. THE CLASSIFICATION OF THE TIME SERIES FORECASTING METHODS. 

The widely used statistical methods are ARIMA, Seasonal ARIMA (SARIMA), moving average 

and exponential smoothing. [17]–[21]. 

In [17], [21] the authors proposed a method that categorizes the Big Data (BD) stream 

based on its variety. Subsequently, the volume and velocity of the stream are predicted 
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using KF by considering this variety. To achieve this, they identified the workload types 

using a statistical approach. Their approaches heavily depended on semantic parsing of the 

workload, which was considered a limited approach due to its reliance on a multi-file 

identification tool to generalize the work for various types. Unfortunately, there is no such 

tool capable of handling all file types effectively. Additionally, any method relying on file 

signatures for type identification becomes ineffective in the event of data corruption. These 

limitations highlighted the need for alternative approaches to overcome these challenges in 

file type identification and semantic parsing. 

In addition to the high exploitation of statistical methods by researchers, many studies 

related to time-series data forecasting based on computational intelligence methods have 

emerged [22]–[27]. The authors in [27] proposed a workload prediction adaptive NNs 

model for average workload forecasting over consecutive prediction intervals proactively. 

The proposed model learned workload patterns for specific prediction intervals from 

historical data using the proposed novel Auto Adaptive Differential Evolution (AADE) 

algorithm. The performance of the proposed model was evaluated on NASA and 

Saskatchewan HTTP traces. 

In [14], the authors presented an demand forecasting method based on multi-layer LSTM networks, 

specifically designed to handle highly fluctuating demand data. Their approach selected the best 

forecasting model by exploring different hyperparameters’ combinations of LSTM.  

In [28], the authors introduced an ensemble learning-based workload prediction technique that 

leverages extreme learning machines, and their predictions are combined using a voting engine with 

weighted inputs. Google Cluster Trace, which constitute resource utilization metrics, and PlanetLab 

traces were used to evaluate the accuracy of their approach. 

In [29], the authors conducted an investigation into the use of Bayesian Neural Networks and DL 

models for predicting workload distribution. They evaluated these models in the context of time series 

forecasting for CPU and memory workloads across 8 clusters in the Google Cloud data center, which 

involved resource utilization metrics. The experiments revealed that the proposed models were effective 

in providing accurate demand predictions and improved estimations of resource usage bounds. The 

models successfully reduced overprediction and the total predicted resources, while also avoiding 

underprediction, demonstrating their potential in optimizing resource allocation and management in 

cloud environments. 

In [30], an approach based on DL was presented, employing a combination of neural networks to 

analyze historical workload data and predict future workloads. The model's performance was assessed 

using real datasets obtained from real-time resource utilization and performance metrics The proposed 

algorithm successfully provided precise predictions of future workloads, demonstrating its effectiveness 

in workload forecasting. 

All the mentioned research, except [17], [21], employ performance metrics, resource 

utilization metrics, or system logs as historical data rather than historical workload patterns, 

which are utilized in studies [17], [21]. In the context of BD streaming, historical workload 

patterns hold particular significance. Streaming involves real-time data ingestion, making 

workload patterns crucial for understanding variations. While resource utilization and 

performance metrics are also relevant, workload patterns address the dynamic nature of 

streaming. They play a vital role in guiding real-time resource provisioning decisions by 

revealing workload fluctuations and patterns. 

table I summarizes the recent studies that relied on the time series forecasting 

approach. The most prominent feature of our work with the literature referred to in table I is 

the deployment of it in a virtual machine composing the possibility of distributed analysis 
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and forecasting with RMSE and MAE values of 71.85% and 74.88% lower than that of the 

LSTM respectively. 

 

TABLE I. THE RECENT WORKLOAD DEMAND FORECASTING STUDIES 

Contributors year 
Forecasting 

Method 
Methodology 

Type of historical 

data 
Dataset Name 

Kaur and Sood [17] 2017 

st
at

is
ti

ca
l 

te
ch

n
iq

u
es

 

KF Workload Pattern Synthetic data 

Murray et al. [18] 2018 ARIMA real-life time series data 
historical transaction data 

(costumer segmentation) 

Sarica et al. [19] 2018 AR–ANFIS real-life time series data real-life time series data 

Parmezan et al. [20] 2019 

Eleven predictors 

(seven 

parametric and four 

non-parametric) 

- 95 datasets 

Kaur et al. [21] 2020 KF Workload Pattern Synthetic data 

Martinez et al. [22] 2018 

co
m

p
u

ta
ti

o
n

al
 i

n
te

ll
ig

en
ce

 

K-NN real-life time series data NN5 competition time series. 

Kumar et al. [23] 2018 LSTM System logs 
Three benchmark datasets 

consisting of web server logs 

Martinez et al. [26] 2019 K-NN real-life time series data NN3 competition time series. 

Shi et al. [25] 2019 LSTM real-life time series data gyroscope shell temperature data 

Sagheer and Kotb [24] 2019 DLSTM real-life time series data petroleum time series datasets 

Kumar and Singh [31] 2019 Differential Evolution 
Resource utilization 

metrics 
Google's real-world trace 

Saxena and Singh [27] 2020 AADE 
Resource utilization 

metrics 

NASA and Saskatchewan HTTP 

traces. 

Abbasimehr et al. [14] 2020 LSTM real-life time series data sale data of a furniture company 

Kumar et al. [28] 2020 
Ensemble learning-

based model 

Resource utilization 

metrics 

CPU utilization of Google 

clusters and PlanetLab traces. 

Rossi et al. [29] 2022 

Bayesian Neural 

Networks and DL 

models 

Resource utilization 

metrics 
Google cloud clusters trace 

Bansal and Kumar [30] 2023 ANN 
resource utilization and 

performance metrics 
real-time dataset 

DLSTM-MSF - Ensemble LSTM Workload Pattern Time series of LSDStrategy 

 

III. PROBLEM STATEMENT 
 

The efficient and timely delivery of resources in cloud computing presents a major challenge. Some 

cloud providers still allocate resources statically based on peak demands, leading to high costs for 

customers and low resource utilization. Dynamic resource allocation is a more effective approach, but 

resource demands fluctuate continuously. To ensure a positive user experience, proactive resource 

provision is crucial, but overestimating can result in wasteful over-provisioning, while underestimating 

leads to unmet demands. Accurately forecasting future resource demands is the key challenge [32]. 

Numerous techniques and studies have addressed workload forecasting for resource allocation. In 

stochastic environments like big data steaming, shallow or short-term algorithms may impact prediction 

accuracy, leading to over- or under-provisioning. DL models, such as LSTM, excel at recognizing 

inherent patterns, making them superior in extracting characteristics from workload patterns compared 

to shallow models. 
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Our work focuses on streaming big data applications with unpredictable workload characteristics, 

which heavily influences resource provisioning. Predicting the type of streaming data also impacts the 

choice of cloud resources for processing or storing the data. 

In this paper, we employ DLSTM-MSF to forecast multimedia streaming workload demand using 

timeseries data obtained from our previous work [13] that utilizes the content based analysis [33] in the 

prediction and generating the time series. The timeseries dataset comprises the workload request types 

at specific time instances, predicted through content-based analysis. DLSTM-MSF is deployed in a 

distributed environment for reliable and scalable data streaming capabilities. Accurate workload 

demand prediction can significantly enhance the availability and reliability of multimedia streaming 

systems. 

IV. THEORETICAL BACKGROUND 

A. LSTM  

LSTM is an extension of RNNs that has a strong capability in forecasting time series data. The 

RNNs have some weaknesses, such as the exploding gradient and vanishing problem, which make 

training challenging [20]. To overcome these issues, researchers have introduced gated designs like 

LSTM, which can capture longer-range timing information and are more effective in handling time 

series data The main difference between an RNN and LSTM is that it is structured of three gates: a 

forget gate, an input gate (cell memory), and an output gate which controls the flow of information [14], 

[34].  That structure provides it with the capability of storing long-range time dependency information 

and the suitability of mapping between input and output data.  

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2 illustrated the LSTM network structure where the notations used in LSTM learning process 

equations is summarized in Table II. The status updating process of the memory unit are as follows 

[14]:  

1. The forget gate removes data from the memory unit in accordance with the input (x(ti)) of the 

present time and the prior time output h(ti-1) using sigmoid activation function (σ). This is computed 

using Eq. 1. 

 𝑓(𝑡𝑖) = 𝜎(𝑤𝑓𝑥(𝑡𝑖) + 𝑤ℎ𝑓ℎ(𝑡𝑖−1) + 𝑏𝑓)                                       (1) 

2. The information to be stored in the memory unit is determined by the input and forgetting gates. 

This is computed using Eq. 2 and 3. 

3.  

𝑎(𝑡𝑖) = 𝜎(𝑤𝑎𝑥(𝑡𝑖) + 𝑤ℎ𝑎ℎ(𝑡𝑖−1) + 𝑏𝑎)                                       (2) 

𝑐(𝑡𝑖) = 𝑓𝑡 × 𝑐(𝑡𝑖−1) + 𝑎𝑡  × 𝑡𝑎𝑛ℎ(𝑤𝑐𝑥(𝑡𝑖) + 𝑤ℎ𝑐ℎ(𝑡𝑖−1) + 𝑏𝑐)          (3) 

4. The output gate commits regulation on the output of an LSTM cell and finally is updated by 

considering cell state. This is computed using Eq. 4 and 5. 

𝑜(𝑡𝑖) = 𝜎(𝑤𝑜𝑥(𝑡𝑖) + 𝑤ℎ𝑜ℎ(𝑡𝑖−1) + 𝑏𝑜)                                      (4) 

ℎ(𝑡𝑖) = 𝑜(𝑡𝑖)  ×  𝑡𝑎𝑛ℎ(𝑐(𝑡𝑖))                                                 (5) 
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FIG. 2. LSTM NETWORK STRUCTURE [14]. 

Overall, the learning process steps for the LSTM network done as follows: 

Step_1: Calculate the value of the output gate for the LSTM network, the forward learning, using Eq. 

(1)-(5). 

Step_2: Calculate the error value that resulted from the difference between the input value and the output 

value for each layer of the network. 

Step_3: Spread the error value computed in Step_2 in reverse for the three gates: input, cell, and forget. 

Step_4: Update the weight for each of the above gates depending on the error value using an 

optimization algorithm. 

TABLE II. NOTATIONS BASED LSTM LEARNING PROCESS 

Notation Brief Meaning 

a(ti) The input gate 

f(ti) The forget gate 

c(ti) The cell state (cell memory) 

o(ti) The output gate 

x(ti) The current input value 

h(ti) and h(ti-1) The current and previous output values 

c(ti)   and c(ti-1) The current and previous state of the cell (cell memory) 

𝑾𝟏
⃗⃗ ⃗⃗ ⃗⃗   = { wa, wf , wc , wo} The weight matrix for the input gate, forget gate, cell state and output gate. 

𝑾𝟐
⃗⃗ ⃗⃗ ⃗⃗   = { wha, whf , whc , who} The recurrent weights matrix for the input gate, forget gate, cell state and 

output gate. 

b= {ba, bf , bc , bo} The biases value for the input gate, forget gate, cell state and output gate. 

�⃗⃗�  = { a(ti), f(ti), c(ti), o(ti)} The output matrix for the input gate, forget gate, cell state and output gate 

σ Sigmoid activation function 

× point-wise multiplication 

 

B. LSTM Hyperparameter Tuning 

The LSTM network has demonstrated satisfactory performance when applied to sequence data. 

However, achieving good results with LSTM networks is a complex endeavor due to the need for 

optimizing multiple hyperparameters. The selection of appropriate hyperparameters is crucial for 

improving the model's performance. Noteworthy hyperparameters for time series forecasting problems 

include lag size (the number of past observations, layers number, learning rate, number of neurons, 

activation function, number of epoch, and Batch size [35]. 

However, the impact of these hyperparameters can vary depending on the dataset and the specific 

time series forecasting task. Therefore, a systematic hyperparameter search, like grid search or random 

search, combined with cross-validation, is recommended to find the best combination of 

hyperparameters for the LSTM model. 
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C. Dataset Analysis 

The dataset utilized here is the time series dataset was generated from the deployment of the 

LSDStrategy [13]. The LSDStrategy deployment is designed for a streaming file upload use case, 

where file requests are broken down into smaller chunks. This strategy is particularly effective when 

dealing with distributed file systems, distributed databases, distributed computing, and limited Internet 

capability. The use of a specific sliding window size allows for the collection of these smaller chunks 

over a period of time. From these chunks, features are extracted, which were previously selected in the 

Feature Selection stage of the LSDStrategy pipeline. The data set used in this pipeline was based on 

content analysis [33]. The primary objective of the LSDStrategy was to estimate diversity in 

multimedia streams within big data. The estimation results take the form of time series data, which 

includes the timestamp of request reception, its type, and the number of requests. The variables of the 

used dataset are: 

 Timestamp of request reception: It indicates the time at which a particular request type is received. 

This variable represents the temporal aspect of the data points.  

 Request type: It represents the data type of the request, which is related to the file content being 

uploaded including four types: image, video content, audio, and text. 

 Number of requests: It indicates the count of requests of a particular request type, which is received 

at that timestamp. 

Therefore, there are three variables being recorded over time, so this time series is considered 

multivariant time series data. A multivariate time series data set is data that contains multiple variables 

or features, where each variable's value is recorded over time. That’s mean each timestamp is associated 

with the two variables' values.  

D. Data Preparation 

Time Series data contains a lot of information; however, it is typically hidden. So, any time-series 

data, especially real-time data, needs strict preprocessing. Unordered timestamps, missing values, and 

data noise are the most frequent issues with time series. The handling of missing values is the most 

challenging of the aforementioned issues. This section composes the data preprocessing technique 

including structuring, imputation, normalization, and transformation. 

In most cases, time series data is acquired in unstructured formats, e.g., timestamps often be mixed 

up and improperly arranged. Therefore, the structuring process involves several operations to form the 

data in a structure that is amenable to time-based, including data parsing, and temporal aggregation.  

Data parsing revolves around representing the timestamps of the data in a structure that is amenable 

to time-based slicing and dicing (transformed into an appropriate date-time data type). Moreover, 

temporal aggregation is employed to transform time series data by consolidating data points and 

adjusting the data's granularity by clearing data and resampling. 

Data Cleaning involves consolidating data points that share the same timestamp and summing their 

values. While data resampling concerns changing the time series data's granularity by converting it to 

a different time frequency.  

The imputation process is concerned with compensating for missing data or gaps in time series 

timestamps, which in turn may negatively affect the quality of the data and thus the forecasting because 

the order in which values are received is important. That makes the conventional imputation approaches 

unsuitable for the time-series data [36]. 

Moreover, the normalization technique standardizes the time series data to a uniform range, such 

as Min-Max process. This type of works by subtracting the minimum value from each data point and 

then the result by the difference between the maximum and minimum values. This results in a new 

range of values between 0 and 1, where 0 represents the minimum value, and 1 represents the maximum 

value [37]. In addition, transformation is one of the most data preparation processes. It concerns 
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reshaping the dataset instance from a sequence of points to a pair of input/output points, enabling its 

compatibility with supervised learning model. 
 

V. METHODOLOGY OF DLSTM-MSF MODEL 

A DLSTM-MSF has been proposed to forecast the workload patterns of multimedia streaming in 

a distributed environment. This approach utilizes LSTM networks, which are ideal for capturing long-

range dependencies in time series data. DLSTM-MSF involves constructing and evaluating four 

forecasting models using LSTM networks, each specializing in forecasting the workload demand for a 

specific media type: image, audio, video, and text. 

The deployment of DLSTM-MSF utilizes Apache Kafka, a distributed messaging system that 

enables scalable and reliable data streaming. As well as Apache Kafka plays a crucial role in ensuring 

the delivery and ordering of data streams, making it suitable for latency-critical applications like real-

time workload demand prediction.  

In this setup, a stimulus streamer is developed to stream the time-series-based workload demand 

generated from the deployment of [13]. Moreover, four workers are employed, which each is 

responsible for forecasting a specific media type. This division of forecasting problems enables efficient 

parallel processing, considering the unique characteristics of each media type. The architecture of 

DLSTM-MSF is depicted in Fig. 3. 

 

FIG. 3. DLSTM-MSF ARCHITECTURE. 

The streamer streams the historical time series data of [13] in JSON format. Each tuple in the 

schema consists of three parameters: timestamp, media type, and the number of requests. 

To implement this at the technical level, the Kafka Producer API is utilized by the streamer to 

publish the streaming data to four Kafka topics. Each topic is corresponding to a specific media type of 

request. In addition, four workers are developed using the Consumer API.  Where each is subscribing 

to a specific topic.  

The processing stages of each worker are illustrated in  

 

 

 

 

 

 

https://doi.org/10.33103/uot.ijccce.24.1.7


 93 

Received 15/August/2023; Accepted 09/October/2023 

 

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024             

 

 

Fig. 4 including data collecting, data preparation, hyperparameters tuning, transformation, model 

training, and model evaluating. These stages focus on preparing the time series data and optimizing the 

hyperparameters of the LSTM network to overcome the challenges of obtaining an accurate forecasting 

model for nonlinear and non-stationary demand time series. 

 
 

 

 

 

 

 

 

 

 

FIG. 4. WORKER BASED PROCESSING STAGES. 

A. Data Collecting 

Each worker in the proposed DLSTM-MSF plays a crucial role in collecting time series data that 

is related to the specific topic it subscribes to. As mentioned, the historical time series of the [13] is a 

multivariant time series data. Thus, to convert it to univariant and enabling the distributed processing, 

the streamer publishes those data into four specific topics. Upon subscription of each worker to a 

specific topic, the workers continuously listen for new data records generated by the corresponding 

media type, such as image, audio, video, or text. By adhering to their designated topics and leveraging 

the capabilities of the Kafka Consumer API, each worker in the DLSTM-MSF system efficiently and 

accurately collects the data required for forecasting workload patterns in multimedia streaming. As data 

streams arrive, the workers extract relevant information from each tuple that is required to train the 

forecasting model, which are timestamp, and the number of requests. These data points are vital for 

understanding the temporal characteristics and demand patterns specific to the media type under 

consideration. Furthermore, the workers store the collected data in a structured format for further 

analysis and forecasting. To ensure real-time data processing, the workers are designed to efficiently 

handle incoming data as it becomes available. This enables the workers to stay synchronized with the 

data flow and capture the latest workload demands for their respective media types. Fig. 5 shows the 

original observation and trends component of the collected media time series data by all workers. 

  

B. Data Preparation 

Due to the reality of each worker ingesting only the data related to a specific topic, the collected time 

series of each worker may encourage a time gap. In addition, the collected data were streamed as a 

string data time type that means several data preprocessing techniques are required including: 
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 Structuring: To make the collected time series amenable to forecast, several processing steps 

are performed, including parsing, cleaning, and resampling. Parsing involves converting the timestamp 

of the collected data to a time-based data type. Additionally, the cleaning process deals with duplicated 

values, where multiple instances have the same time value. Since time series forecasting requires unique 

time instances, all duplicated values for the same time instance are aggregated. Finally, the resampling 

process involves downsampling the data by aggregating the time frequency from a lower level to an 

upper level to increase the data's worth. The time frequency of the collected data is summarized from 

seconds to hours. 

 Imputing: Due to the context of each worker ingesting only the time series related to its 

subscription, often some time gaps occur. These gaps represent the absence of a specific event (request 

for a specific media time). Therefore, zero imputation is utilized, which is a straightforward method to 

replace the missing values with zeros, indicating the absence of a certain measurement during those 

time points. 

 Splitting: The collected time series is split into a training and testing set, with a thirty-day 

training set and the last day as the testing set. The LSTM models are trained and optimized using the 

training set and evaluated using the testing set. 

 Scaling: Since most forecasting techniques show more promising forecasting ability with 

normalized data, in this stage, the min-max normalization algorithm is utilized. 

C. Hyperparameter Tuning 

In this work, LSTM networks by Keras are adopted. However, achieving high performance with these 

networks is not a straightforward task. To optimize this model, we need to search for high-impact 

parameters to configure. We employ the widely-used grid search method, which allows us to explore 

various combinations of hyperparameters comprehensively. Seven different hyperparameters were 

adjusted during our experiments, as illustrated in Table III. Depending on the number of values for each 

hyperparameters, a list of parameter combinations is generated and utilized for data transformation 

along with model configuration and training. 
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FIG. 5. THE OBSERVED AND TREND COMPONENT OF THE IMAGE, TEXT, VIDEO, AUDIO REQUEST FOR ONE WEEK. 

TABLE III. HYPERPARAMETERS SEARCH SPACE 

Hyperparameter Name Values 

Lag size [3, 4, 5, 6] 

The number of nodes [50, 100, 150, 200] 

Epochs number [25, 50, 100, 125] 

Batch size [2, 3, 4] 

Activation function [tanh, relu, sigmoid] 

Learning rate [0.001, 0.01, 0.1] 

Number of layers [1, 2] 

D. Transforming 

Based on the selected lag and batch sizes observed in the previous stage, the time series data is re-

formed into a structure of input/output points. By this form, the time series data be suitable for 

supervised learning, making it ready for training the LSTM network.  

E. Models Training 

The proposed DLSTM-MSF approach is mainly designed to improve the performance of the LSTM 

model. Initially, a single LSTM network is designed and trained using the best set of selected 

hyperparameters. The LSTM network employs the Adam algorithm as the optimizer, and the Mean 

Squared Error (MSE) as the loss function. Subsequently, two ensembled versions of the LSTM network 

are created named Ensemble V1 and Ensemble V2. In Ensemble V1, two LSTM models are 

independently trained, each utilizing a distinct subset of the training set. Similarly, in Ensemble V2, 

three LSTM models are trained independently on different subsets of the data. The ensemble LSTM 

models are implemented using the Bagging technique [38]. By training multiple models on diverse 

subsets, the ensemble can effectively capture various patterns in the data and mitigate overfitting. 

F. Model Evaluation 
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Two performance metrics including root mean square error (RMSE) and mean absolute error 

(MAE) are applied to evaluate the efficiency of all the LSTM models, the single LSTM mode, and the 

two versions of the ensemble LSTM model. The average magnitude of error is computed by RMSE and 

average magnitude of that error irrespective to its direction is calculated by MAE [39]. They computed 

using the Eq. 6 and 7 respectively. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                          (6) 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|�̂�𝑖𝑖

− 𝑦𝑖|

𝑛

𝑖=1

                                                        (7) 

In both equations, 𝑛 depicts the data observations, while 𝑦𝑖  and �̂�𝑖 denoted to the 

original and forecasted value at time point 𝑖 respectively. The testing set is used in this stage 

to evaluate the three models and find which provide the minimum RMSE and MAE. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

This section discusses the results of implementing the DLSTM-MSF. The Kafka server (v. 3.2.0) 

is utilized which composed of one producer (streamer) and four consumers (workers). Virtual machines 

with Ubuntu are utilized to build our cluster. Table IV illustrates the cluster nodes characteristics.  

 

TABLE IV. CLUSTER NODES CHARACTERISTICS 

Parameter Streamer Worker 

Operating System Ubuntu 20.04.4 LTS Ubuntu 20.04.4 LTS 

Processor 2.00 GHz Intel(R) Core (TM) i7 2.00 GHz Intel(R) Core (TM) i7 

Memory 12 GB 12 GB 

 

The implementation used the Python programming language (3.9.5) with the necessary data 

manipulation and analysis libraries to prepare the data, and the Keras and Tensorflow packages to 

design the LSTM models. 

Each worker subscribes to a specific topic under which the corresponding data is streamed. Then 

the collected data is prepared to be transformed into supervised data. The Keras ‘TimeseriesGenerator’ 

class is utilized to re-form the collected time series into a structure of input/output points. This class 

automatically reshapes the time series data into a format suitable for supervised learning, making it 

ready for training the LSTM network. 

The transformation process is affected by the number of lag and batch size hyperparameters that 

are selected.  Table V illustrates the optimized value of hyperparameters obtained from the grid search 

process of each worker. These hyperparameters are selected based on their ability to minimize the 

RMSE. 

 

 

 

  

TABLE V. THE BEST SET OF THE SEARCHED LSTM NETWORKS HYPERPARAMETERS FOR DIFFERENT TIME SERIES 

Hyperparameter Name 
Hyperparameter Value 

Worker (1) Worker (2) Worker (3) Worker (4) 
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(Image workload time 

series) 

(Text workload time 

series) 

(Video workload 

time series) 

(Audio workload time 

series) 

Lag size 4 4 3 4 

The number of nodes 150 100 50 150 

Epochs number 50 50 50 50 

Batch size 3 3 2 4 

Activation function Relu Relu Relu Relu 

Learning rate 0.001 0.001 0.001 0.001 

Number of layers 2 2 1 1 

Based on the selected lag size and batch size, the ‘TimeseriesGenerator’ class generates 

overlapping sequences of length equal to lag size from the original time series data. For example, with 

a lag size of 4, each time series points sequence of length 4 is used as input to predict the subsequent 

time step, which becomes the output. Furthermore, with a batch size of 3, the parameters of the model 

will be updated after three instances. A subset of the created input/output pairs for the four time series 

data are illustrated in  

Table VI, VII, and VIII. These input/output pairs create a supervised learning dataset, which is 

suitable to learn the LSTM network. The ti in these tables refers to the time series point in i time.  

TABLE VI. A SUBSET OF INPUT/OUTPUT PAIRS INSTANCE FOR IMAGE AND TEXT WORKLOAD TIME SERIES 

 (FOR LAG=4, BATCH SIZE = 3)  

Batch No. Input Output  

1st {t1, t2, t3, t4} {t5} 

{t2, t3, t4, t5} {t6} 

{t3, t4, t5, t6} {t7} 

2nd {t4, t5, t6, t7} {t8} 

{t5, t6, t7, t8} {t9} 

{t6, t7, t8, t9} {t10} 

 

TABLE VII. A SUBSET OF INPUT/OUTPUT PAIRS INSTANCE FOR VIDEO (FOR LAG=3, BATCH SIZE = 2)  

Batch No. Input Output  

1st {t1, t2, t3} {t4} 

{t2, t3, t4} {t5} 

2nd {t3, t4, t5} {t6} 

{t4, t5, t6} {t7} 

 

TABLE VIII. A SUBSET OF INPUT/OUTPUT PAIRS INSTANCE FOR AUDIO WORKLOAD TIME SERIES (FOR LAG=4, BATCH SIZE = 4)  

Batch No. Input Output  

1st 

 

{t1, t2, t3, t4} {t5} 

{t2, t3, t4, t5} {t6} 

{t3, t4, t5, t6} {t7} 

{t4, t5, t6, t7} {t8} 

2nd {t5, t6, t7, t8} {t9} 

{t6, t7, t8, t9} {t10} 

{t7, t8, t9, t10} {t11} 

{t8, t9, t10, t11} {t12} 

Through the utilization of the best-selected hyperparameter and the transformed data, the LSTM 

models are designed and trained. A comparative study is conducted among the three models using 

RMSE and MAE as an evaluation metric. To make a fair evaluation, all the designed models from all 
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workers are trained with thirty-day time points and tested by one-day time points of the collected 

dataset.  

Fig. 6 shows the evaluation report for the adopted three models by all workers. All the designed 

models by each worker are tested using the test set of the corresponding media time series.  

The evaluation results highlighted the superiority of the Ensemble V1 model across all datasets. 

The values of RMSE and MAE for this model in Image and Text demand forecasting are largely 

consistent, measuring 0.09 and 0.077, respectively. Meanwhile, for Video demand forecasting, these 

values are 0.067 and 0.052, respectively. However, despite the Ensemble V1 outperforming other 

models in Audio demand forecasting, its performance isn't as impeccable as it is in the case of the other 

three media demand forecasts. This discrepancy is due to the inherent fluctuations present in the Audio 

time series data. Fig. 7 depicts the performance of the three models’ training and test fit over the 

corresponding time series.  

The primary objective of the proposed DLST-MSF is to establish a distributed environment ready 

for forecasting multimedia streaming's workload demand. Historical data form the foundation of this 

endeavor, drawn from the workload pattern of requests. These historical data originate from a previous 

deployment that predicts multimedia data types through content analysis [13]. This utilization employed 

a machine learning (ML) algorithm, which addresses the limitations of semantic and non-semantic 

parsing (e.g., non-ML) methods by leveraging ML's statistical classification capabilities. This 

pioneering analysis marks the first instance of streaming data analysis. 

 

FIG. 6. THE EVALUATION REPORT OF THE THREE MODELS BASED ON EACH WORKER: TIME-SERIES PAIR. 

Furthermore, the proposed DLST-MSF's validity in workload demand forecasting is substantiated 

through a comparative analysis with recent approaches. In our survey, all studies employed performance 

metrics, resource utilization metrics, or system logs as historical data except [17], [21], which were 

employed historical workload patterns. Within the realm of Big Data (BD) streaming, historical 

workload patterns assume particular significance. As streaming involves real-time data ingestion, these 

patterns become critical for comprehending variations. While resource utilization and performance 

metrics maintain relevance, workload patterns address the dynamic nature of streaming. They play a 

pivotal role in guiding real-time resource provisioning decisions by unveiling workload fluctuations 

and patterns. 

The authors in [17], [21] employ historical data extracted based on identifying workload via 

examination of the magic numbers (file extensions) in data request blocks. To accomplish this, they 
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utilize a statistical approach to ascertain workload types. Their approaches heavily depend on semantic 

parsing of the workload, which is deemed limited due to its reliance on a multi-file identification tool 

that struggles to generalize across various types of work. Unfortunately, no such tool is universally 

effective across all file types. Additionally, any method hinging on file signatures for type identification 

loses effectiveness in cases of data corruption. Implementing this method becomes challenging when 

confronting big data streams in practical scenarios. Moreover, they utilize the Kalman Filter (KF) for 

forecasting workload demand, dealing with linear dynamics and Gaussian noise data. However, in the 

realm of big data streaming, such as multimedia streaming, non-linear and stochastic data prevail. As 

such, these limitations underscore the need for alternative approaches to surmount the challenges and 

provide media workload pattern data that significantly influence the workload demand forecasting 

process. Hence, the aforementioned non-predictive time series approaches and those founded on 

performance metrics and resource utilization metrics exhibit evident limitations in comparison to our 

proposal. 

  

  

FIG. 7. FORECASTING RESULTS FROM THREE MODELS OVER THE FOUR MEDIA TIME SERIES DATA. 

VII. CONCLUSIONS AND FUTURE WORK DIRECTIONS 

The focal point of LSTM network models lies in their potential for forecasting workload demand, 

thereby enhancing the resource manager's decision-making. To this end, we proposed a DLSTM-MSF 

approach, leveraging both a straightforward LSTM model and an ensemble LSTM model (a composite 

of LSTM models). The implementation of DLSTM-MSF was executed on the Apache Kafka server. 

Renowned for its capability to ensure data stream delivery and ordering, Apache Kafka proves ideal for 

latency-critical applications like real-time workload demand prediction. 

The hyperparameters of the LSTM model were calibrated using the adopted time series data. A 

stimulus streamer was developed to stream time-series data encompassing the count of requests for four 

distinct types of media streaming over the course of a month. For this context, four workers were 

developed, each tasked with the preparation and forecasting of a specific media time series—Image, 

Text, Video, or Audio. 
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The core responsibility of each worker involved determining the optimal hyperparameters for the 

LSTM network relevant to its time series data following its preparation. Subsequently, each worker 

devised and trained three network models utilizing the LSTM network, employing the optimal set of 

hyperparameters. The evaluation results underscored the ensemble model's superior performance, based 

on two LSTM networks, which outperformed other designed models. This superiority was evident in 

its capacity to minimize error rates when forecasting unseen data for the upcoming day. 

In future work, we hope to do the following: 

 Aggregating the forecasting outcomes for the four-time series to derive statistical characteristics 

pertinent to the workload. This endeavor will provide valuable insights into the workload's 

dynamics, influencing the resource manager's decision-making process. 

 Develop an optimization methodology tailored for the resource manager by leveraging the 

identified workload characteristics. This method will guide the allocation and provisioning of 

resources. The goal is to enhance resource utilization, thereby optimizing operational efficiency. 
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