
 84

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

DLSTM-MSF: Distributed LSTM Models for

Multimedia Streaming Workload Forecasting

Based on Kafka Environment

Saja Dheyaa Khudhur1, Hassan Awheed Jeiad2
1,2Computer Engineering Department, University of Technology, Baghdad, Iraq

1saja.d.khudhur@uotechnology.edu.iq, 2hassan.a.jeiad@uotechnology.edu.iq

Abstract— This paper introduces DLSTM-MSF, a distributed approach

designed to address the challenge of demand forecasting in multimedia

streaming workloads. DLSTM-MSF leverages the power of multi-LSTM

networks, each tailored to predict data demand for a specific type of

multimedia streaming workload. The central problem addressed in this

research is the accurate prediction of workload demand in a dynamic and

diverse multimedia streaming environment. To achieve specialization, the

training time series set for each LSTM network comprises examples with

targets belonging exclusively to the workload type it is designed to predict.

This specialization ensures that each LSTM network becomes proficient at

capturing the unique demand patterns associated with its designated workload

category. The methodology of the proposed approach is based on building the

best forecasting model for each multimedia streaming workload type by

exploring various combinations of LSTM hyper-parameters using the grid

search method. This enables the proposed approach to effectively capture

nonlinear patterns in time series data. Furthermore, the implementation of

DLSTM-MSF incorporates Apache Kafka for online demand prediction,

utilizing the best-developed model for each workload type. Experimental

evaluations of DLSTM-MSF compare the performance of two ensemble-

learning LSTM models (Ensemble V1 and Ensemble V2) with a single LSTM

model. The results unequivocally highlight the superiority of Ensemble V1,

with reductions of 71.85% and 74.88% in RMSE and MAE values,

respectively, compared to the single LSTM model.

Index Terms— Multimedia streaming, LSTM, Ensemble learning, Forecasting, Workload

Demand, Big data.

I. INTRODUCTION

All sizes of businesses now employ cloud computing extensively. Although there is no

denying its advantages, cloud resources can be expensive, especially when they are

provisioned with a sufficient safety buffer to ensure system availability during unplanned

situations. Severe costs can be entailed due to the unrestricted scaling of the cloud

resources; businesses are over budget on the public cloud by 13%, according to Flexera

2022 State of the Cloud Report, and they anticipate a further rise in cloud spending of 29%

over the following 12 months that suggests understanding forecasting and cost optimization

is more important than ever. Access to auto-scaling components integrated into cloud

platforms is available from all major cloud computing providers, including Amazon

(Amazon Web Services), Google (Google Cloud Platform), and Microsoft (Azure) There

https://doi.org/10.33103/uot.ijccce.24.1.7
mailto:saja.d.khudhur@uotechnology.edu.iq
mailto:hassan.a.jeiad@uotechnology.edu.iq

 85

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

are also commercial, cloud provider-agnostic applications created to maximize the use of

cloud resources. Similarly, there are other researches on this subject that can be found in the

literature [1]–[3]. The typical strategy for resource optimization [4], [5] concentrates on

formalizing the system model and attempting to classify system load. This can lead to poor

efficiency when dealing with real-world data that contains random anomalies such as big

data streaming [6], [7]. The workload demand for multimedia streaming is one of the more

crucial issues in big data streaming. It imposes the dealing with a multi-non-linear time

series to provide an accurate demand forecasting impacting the resource utilization.

All planning activities heavily rely on demand forecasts, making demand prediction a

crucial aspect of predictive analytics for anticipating future demand. Accurate demand

forecasting is essential to ensure appropriate supply chain management [8]. However,

traditional demand forecasting techniques have faced challenges in accurately predicting

demand due to intense competition across industries.

The development of workload demand forecasting based on multimedia streaming meaning the

deal with the big data streaming characteristics. The main distinctive characteristic of big data in this

context is Variety, which means that data is collected in various formats, such as blog entries, videos,

text, images, and audio, often referred to as unstructured data. This type of data poses additional

requirements that traditional solutions may not adequately address [8].

Furthermore, different workloads, areas, or domains require various resources. Cloud resources

vary in terms of memory size, processor speed, etc. Therefore, resource allocation algorithms need to

efficiently utilize these resources while adhering to service-level agreements (SLAs). To ensure the

availability of the services, no machine should be overloaded or underloaded. It is essential to balance

the load to optimize the performance parameters of the allocation process. Two types of resource

allocation implementations exist: static and dynamic. However, due to the stochastic nature of the big

data environment and the need for heterogeneous resources, static resource allocation has limitations

[9].

Dynamic resource provisioning is a challenging problem in the scheduling of big data applications.

However, workload prediction plays a crucial role in this dynamic resource allocation process.

Therefore, the prediction of workload and job estimation has garnered significant attention from

researchers and data scientists [10]–[12]. Moreover, much of the existing research on workload

forecasting relies on historical data. In the context of big data streaming, the characteristics of incoming

data streams are unpredictable due to the stochastic nature of the data sources, and the user cannot

determine the requirements in advance. This unpredictability makes it challenging to predict upcoming

workload patterns in real-time and forecast the demand to allocate appropriate resources. These

challenges serve as the primary motivation for the research presented in this paper.

The main objectives of the present work are as follows:

A- Propose multi-forecasting models that can effectively address the heterogeneity

issues of multimedia streaming. These models will automatically forecast the

workload demand based on the elementary types of multimedia, such as image,

video, audio, and text, using the LSTM network.

B- Prepare the time series data that is generated from the deployment of the

LSDStrategy [13]. This data will be used for training and evaluating the proposed

multi-forecasting models.

C- Optimize the hyper-parameters of the multi-LSTM networks and select the most

suitable configuration for each workload type. This step aims to overcome the

challenges of obtaining accurate forecasting models for nonlinear and non-

stationary demand time series data.

https://doi.org/10.33103/uot.ijccce.24.1.7

 86

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

D- Deploy the developed models in a distributed environment to ensure scalability and

reliability in handling data streaming.

The present work achieved the following contributions:

 It introduces a distributed approach called DLSTM-MS, which consists of multi-

forecasting models capable of accurately predicting workload patterns based on

different types of multimedia streaming.

 It presents data preprocessing techniques for the time series data generated from

[13], which is essential for training the forecasting models.

 It fine-tunes the multi-LSTM networks by selecting hyper-parameters that strike a

balance between accuracy and model complexity.

 The work deploys four workers, ensuring scalability and availability while achieving

impressive RMSE and MAE values of 71.85% and 74.88% lower than that of the

simple LSTM networks respectively. This deployment addresses challenges related

to centralized deployment when dealing with real-world data, such as high memory

consumption, long processing and analysis times, computational performance

degradation, and significant I/O overhead.

II. BACKGROUND RESEARCH

In this section, a comprehensive review of the recent literature surveyed the current

state of the art for workload demand forecasting.

 For applications based on forecasting, most earlier techniques based on

computational intelligence and statistical techniques are broadly accepted.

Fig. 1 shows the most common time series forecasting methods. These models come in various

forms, with each model specialized in representing a particular type of nonlinearity. Consequently,

finding an appropriate model for time series forecasting becomes more challenging due to the diverse

range of nonlinear patterns [14]. Although it is cost-effective, aggressive optimization degrades the

Quality of Service (QoS) [15], [16].

FIG. 1. THE CLASSIFICATION OF THE TIME SERIES FORECASTING METHODS.

The widely used statistical methods are ARIMA, Seasonal ARIMA (SARIMA), moving average

and exponential smoothing. [17]–[21].

In [17], [21] the authors proposed a method that categorizes the Big Data (BD) stream

based on its variety. Subsequently, the volume and velocity of the stream are predicted

https://doi.org/10.33103/uot.ijccce.24.1.7

 87

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

using KF by considering this variety. To achieve this, they identified the workload types

using a statistical approach. Their approaches heavily depended on semantic parsing of the

workload, which was considered a limited approach due to its reliance on a multi-file

identification tool to generalize the work for various types. Unfortunately, there is no such

tool capable of handling all file types effectively. Additionally, any method relying on file

signatures for type identification becomes ineffective in the event of data corruption. These

limitations highlighted the need for alternative approaches to overcome these challenges in

file type identification and semantic parsing.

In addition to the high exploitation of statistical methods by researchers, many studies

related to time-series data forecasting based on computational intelligence methods have

emerged [22]–[27]. The authors in [27] proposed a workload prediction adaptive NNs

model for average workload forecasting over consecutive prediction intervals proactively.

The proposed model learned workload patterns for specific prediction intervals from

historical data using the proposed novel Auto Adaptive Differential Evolution (AADE)

algorithm. The performance of the proposed model was evaluated on NASA and

Saskatchewan HTTP traces.

In [14], the authors presented an demand forecasting method based on multi-layer LSTM networks,

specifically designed to handle highly fluctuating demand data. Their approach selected the best

forecasting model by exploring different hyperparameters’ combinations of LSTM.

In [28], the authors introduced an ensemble learning-based workload prediction technique that

leverages extreme learning machines, and their predictions are combined using a voting engine with

weighted inputs. Google Cluster Trace, which constitute resource utilization metrics, and PlanetLab

traces were used to evaluate the accuracy of their approach.

In [29], the authors conducted an investigation into the use of Bayesian Neural Networks and DL

models for predicting workload distribution. They evaluated these models in the context of time series

forecasting for CPU and memory workloads across 8 clusters in the Google Cloud data center, which

involved resource utilization metrics. The experiments revealed that the proposed models were effective

in providing accurate demand predictions and improved estimations of resource usage bounds. The

models successfully reduced overprediction and the total predicted resources, while also avoiding

underprediction, demonstrating their potential in optimizing resource allocation and management in

cloud environments.

In [30], an approach based on DL was presented, employing a combination of neural networks to

analyze historical workload data and predict future workloads. The model's performance was assessed

using real datasets obtained from real-time resource utilization and performance metrics The proposed

algorithm successfully provided precise predictions of future workloads, demonstrating its effectiveness

in workload forecasting.

All the mentioned research, except [17], [21], employ performance metrics, resource

utilization metrics, or system logs as historical data rather than historical workload patterns,

which are utilized in studies [17], [21]. In the context of BD streaming, historical workload

patterns hold particular significance. Streaming involves real-time data ingestion, making

workload patterns crucial for understanding variations. While resource utilization and

performance metrics are also relevant, workload patterns address the dynamic nature of

streaming. They play a vital role in guiding real-time resource provisioning decisions by

revealing workload fluctuations and patterns.

table I summarizes the recent studies that relied on the time series forecasting

approach. The most prominent feature of our work with the literature referred to in table I is

the deployment of it in a virtual machine composing the possibility of distributed analysis

https://doi.org/10.33103/uot.ijccce.24.1.7

 88

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

and forecasting with RMSE and MAE values of 71.85% and 74.88% lower than that of the

LSTM respectively.

TABLE I. THE RECENT WORKLOAD DEMAND FORECASTING STUDIES

Contributors year
Forecasting

Method
Methodology

Type of historical

data
Dataset Name

Kaur and Sood [17] 2017

st
at

is
ti

ca
l

te
ch

n
iq

u
es

KF Workload Pattern Synthetic data

Murray et al. [18] 2018 ARIMA real-life time series data
historical transaction data

(costumer segmentation)

Sarica et al. [19] 2018 AR–ANFIS real-life time series data real-life time series data

Parmezan et al. [20] 2019

Eleven predictors

(seven

parametric and four

non-parametric)

- 95 datasets

Kaur et al. [21] 2020 KF Workload Pattern Synthetic data

Martinez et al. [22] 2018

co
m

p
u

ta
ti

o
n

al
 i

n
te

ll
ig

en
ce

K-NN real-life time series data NN5 competition time series.

Kumar et al. [23] 2018 LSTM System logs
Three benchmark datasets

consisting of web server logs

Martinez et al. [26] 2019 K-NN real-life time series data NN3 competition time series.

Shi et al. [25] 2019 LSTM real-life time series data gyroscope shell temperature data

Sagheer and Kotb [24] 2019 DLSTM real-life time series data petroleum time series datasets

Kumar and Singh [31] 2019 Differential Evolution
Resource utilization

metrics
Google's real-world trace

Saxena and Singh [27] 2020 AADE
Resource utilization

metrics

NASA and Saskatchewan HTTP

traces.

Abbasimehr et al. [14] 2020 LSTM real-life time series data sale data of a furniture company

Kumar et al. [28] 2020
Ensemble learning-

based model

Resource utilization

metrics

CPU utilization of Google

clusters and PlanetLab traces.

Rossi et al. [29] 2022

Bayesian Neural

Networks and DL

models

Resource utilization

metrics
Google cloud clusters trace

Bansal and Kumar [30] 2023 ANN
resource utilization and

performance metrics
real-time dataset

DLSTM-MSF - Ensemble LSTM Workload Pattern Time series of LSDStrategy

III. PROBLEM STATEMENT

The efficient and timely delivery of resources in cloud computing presents a major challenge. Some

cloud providers still allocate resources statically based on peak demands, leading to high costs for

customers and low resource utilization. Dynamic resource allocation is a more effective approach, but

resource demands fluctuate continuously. To ensure a positive user experience, proactive resource

provision is crucial, but overestimating can result in wasteful over-provisioning, while underestimating

leads to unmet demands. Accurately forecasting future resource demands is the key challenge [32].

Numerous techniques and studies have addressed workload forecasting for resource allocation. In

stochastic environments like big data steaming, shallow or short-term algorithms may impact prediction

accuracy, leading to over- or under-provisioning. DL models, such as LSTM, excel at recognizing

inherent patterns, making them superior in extracting characteristics from workload patterns compared

to shallow models.

https://doi.org/10.33103/uot.ijccce.24.1.7

 89

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

Our work focuses on streaming big data applications with unpredictable workload characteristics,

which heavily influences resource provisioning. Predicting the type of streaming data also impacts the

choice of cloud resources for processing or storing the data.

In this paper, we employ DLSTM-MSF to forecast multimedia streaming workload demand using

timeseries data obtained from our previous work [13] that utilizes the content based analysis [33] in the

prediction and generating the time series. The timeseries dataset comprises the workload request types

at specific time instances, predicted through content-based analysis. DLSTM-MSF is deployed in a

distributed environment for reliable and scalable data streaming capabilities. Accurate workload

demand prediction can significantly enhance the availability and reliability of multimedia streaming

systems.

IV. THEORETICAL BACKGROUND

A. LSTM

LSTM is an extension of RNNs that has a strong capability in forecasting time series data. The

RNNs have some weaknesses, such as the exploding gradient and vanishing problem, which make

training challenging [20]. To overcome these issues, researchers have introduced gated designs like

LSTM, which can capture longer-range timing information and are more effective in handling time

series data The main difference between an RNN and LSTM is that it is structured of three gates: a

forget gate, an input gate (cell memory), and an output gate which controls the flow of information [14],

[34]. That structure provides it with the capability of storing long-range time dependency information

and the suitability of mapping between input and output data.

Fig. 2 illustrated the LSTM network structure where the notations used in LSTM learning process

equations is summarized in Table II. The status updating process of the memory unit are as follows

[14]:

1. The forget gate removes data from the memory unit in accordance with the input (x(ti)) of the

present time and the prior time output h(ti-1) using sigmoid activation function (σ). This is computed

using Eq. 1.

 𝑓(𝑡𝑖) = 𝜎(𝑤𝑓𝑥(𝑡𝑖) + 𝑤ℎ𝑓ℎ(𝑡𝑖−1) + 𝑏𝑓) (1)

2. The information to be stored in the memory unit is determined by the input and forgetting gates.

This is computed using Eq. 2 and 3.

3.

𝑎(𝑡𝑖) = 𝜎(𝑤𝑎𝑥(𝑡𝑖) + 𝑤ℎ𝑎ℎ(𝑡𝑖−1) + 𝑏𝑎) (2)

𝑐(𝑡𝑖) = 𝑓𝑡 × 𝑐(𝑡𝑖−1) + 𝑎𝑡 × 𝑡𝑎𝑛ℎ(𝑤𝑐𝑥(𝑡𝑖) + 𝑤ℎ𝑐ℎ(𝑡𝑖−1) + 𝑏𝑐) (3)

4. The output gate commits regulation on the output of an LSTM cell and finally is updated by

considering cell state. This is computed using Eq. 4 and 5.

𝑜(𝑡𝑖) = 𝜎(𝑤𝑜𝑥(𝑡𝑖) + 𝑤ℎ𝑜ℎ(𝑡𝑖−1) + 𝑏𝑜) (4)

ℎ(𝑡𝑖) = 𝑜(𝑡𝑖) × 𝑡𝑎𝑛ℎ(𝑐(𝑡𝑖)) (5)

https://doi.org/10.33103/uot.ijccce.24.1.7

 90

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

FIG. 2. LSTM NETWORK STRUCTURE [14].

Overall, the learning process steps for the LSTM network done as follows:

Step_1: Calculate the value of the output gate for the LSTM network, the forward learning, using Eq.

(1)-(5).

Step_2: Calculate the error value that resulted from the difference between the input value and the output

value for each layer of the network.

Step_3: Spread the error value computed in Step_2 in reverse for the three gates: input, cell, and forget.

Step_4: Update the weight for each of the above gates depending on the error value using an

optimization algorithm.

TABLE II. NOTATIONS BASED LSTM LEARNING PROCESS

Notation Brief Meaning

a(ti) The input gate

f(ti) The forget gate

c(ti) The cell state (cell memory)

o(ti) The output gate

x(ti) The current input value

h(ti) and h(ti-1) The current and previous output values

c(ti) and c(ti-1) The current and previous state of the cell (cell memory)

𝑾𝟏
⃗⃗ ⃗⃗ ⃗⃗ = { wa, wf , wc , wo} The weight matrix for the input gate, forget gate, cell state and output gate.

𝑾𝟐
⃗⃗ ⃗⃗ ⃗⃗ = { wha, whf , whc , who} The recurrent weights matrix for the input gate, forget gate, cell state and

output gate.

b= {ba, bf , bc , bo} The biases value for the input gate, forget gate, cell state and output gate.

�⃗⃗� = { a(ti), f(ti), c(ti), o(ti)} The output matrix for the input gate, forget gate, cell state and output gate

σ Sigmoid activation function

× point-wise multiplication

B. LSTM Hyperparameter Tuning

The LSTM network has demonstrated satisfactory performance when applied to sequence data.

However, achieving good results with LSTM networks is a complex endeavor due to the need for

optimizing multiple hyperparameters. The selection of appropriate hyperparameters is crucial for

improving the model's performance. Noteworthy hyperparameters for time series forecasting problems

include lag size (the number of past observations, layers number, learning rate, number of neurons,

activation function, number of epoch, and Batch size [35].

However, the impact of these hyperparameters can vary depending on the dataset and the specific

time series forecasting task. Therefore, a systematic hyperparameter search, like grid search or random

search, combined with cross-validation, is recommended to find the best combination of

hyperparameters for the LSTM model.

https://doi.org/10.33103/uot.ijccce.24.1.7

 91

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

C. Dataset Analysis

The dataset utilized here is the time series dataset was generated from the deployment of the

LSDStrategy [13]. The LSDStrategy deployment is designed for a streaming file upload use case,

where file requests are broken down into smaller chunks. This strategy is particularly effective when

dealing with distributed file systems, distributed databases, distributed computing, and limited Internet

capability. The use of a specific sliding window size allows for the collection of these smaller chunks

over a period of time. From these chunks, features are extracted, which were previously selected in the

Feature Selection stage of the LSDStrategy pipeline. The data set used in this pipeline was based on

content analysis [33]. The primary objective of the LSDStrategy was to estimate diversity in

multimedia streams within big data. The estimation results take the form of time series data, which

includes the timestamp of request reception, its type, and the number of requests. The variables of the

used dataset are:

 Timestamp of request reception: It indicates the time at which a particular request type is received.

This variable represents the temporal aspect of the data points.

 Request type: It represents the data type of the request, which is related to the file content being

uploaded including four types: image, video content, audio, and text.

 Number of requests: It indicates the count of requests of a particular request type, which is received

at that timestamp.

Therefore, there are three variables being recorded over time, so this time series is considered

multivariant time series data. A multivariate time series data set is data that contains multiple variables

or features, where each variable's value is recorded over time. That’s mean each timestamp is associated

with the two variables' values.

D. Data Preparation

Time Series data contains a lot of information; however, it is typically hidden. So, any time-series

data, especially real-time data, needs strict preprocessing. Unordered timestamps, missing values, and

data noise are the most frequent issues with time series. The handling of missing values is the most

challenging of the aforementioned issues. This section composes the data preprocessing technique

including structuring, imputation, normalization, and transformation.

In most cases, time series data is acquired in unstructured formats, e.g., timestamps often be mixed

up and improperly arranged. Therefore, the structuring process involves several operations to form the

data in a structure that is amenable to time-based, including data parsing, and temporal aggregation.

Data parsing revolves around representing the timestamps of the data in a structure that is amenable

to time-based slicing and dicing (transformed into an appropriate date-time data type). Moreover,

temporal aggregation is employed to transform time series data by consolidating data points and

adjusting the data's granularity by clearing data and resampling.

Data Cleaning involves consolidating data points that share the same timestamp and summing their

values. While data resampling concerns changing the time series data's granularity by converting it to

a different time frequency.

The imputation process is concerned with compensating for missing data or gaps in time series

timestamps, which in turn may negatively affect the quality of the data and thus the forecasting because

the order in which values are received is important. That makes the conventional imputation approaches

unsuitable for the time-series data [36].

Moreover, the normalization technique standardizes the time series data to a uniform range, such

as Min-Max process. This type of works by subtracting the minimum value from each data point and

then the result by the difference between the maximum and minimum values. This results in a new

range of values between 0 and 1, where 0 represents the minimum value, and 1 represents the maximum

value [37]. In addition, transformation is one of the most data preparation processes. It concerns

https://doi.org/10.33103/uot.ijccce.24.1.7

 92

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

reshaping the dataset instance from a sequence of points to a pair of input/output points, enabling its

compatibility with supervised learning model.

V. METHODOLOGY OF DLSTM-MSF MODEL

A DLSTM-MSF has been proposed to forecast the workload patterns of multimedia streaming in

a distributed environment. This approach utilizes LSTM networks, which are ideal for capturing long-

range dependencies in time series data. DLSTM-MSF involves constructing and evaluating four

forecasting models using LSTM networks, each specializing in forecasting the workload demand for a

specific media type: image, audio, video, and text.

The deployment of DLSTM-MSF utilizes Apache Kafka, a distributed messaging system that

enables scalable and reliable data streaming. As well as Apache Kafka plays a crucial role in ensuring

the delivery and ordering of data streams, making it suitable for latency-critical applications like real-

time workload demand prediction.

In this setup, a stimulus streamer is developed to stream the time-series-based workload demand

generated from the deployment of [13]. Moreover, four workers are employed, which each is

responsible for forecasting a specific media type. This division of forecasting problems enables efficient

parallel processing, considering the unique characteristics of each media type. The architecture of

DLSTM-MSF is depicted in Fig. 3.

FIG. 3. DLSTM-MSF ARCHITECTURE.

The streamer streams the historical time series data of [13] in JSON format. Each tuple in the

schema consists of three parameters: timestamp, media type, and the number of requests.

To implement this at the technical level, the Kafka Producer API is utilized by the streamer to

publish the streaming data to four Kafka topics. Each topic is corresponding to a specific media type of

request. In addition, four workers are developed using the Consumer API. Where each is subscribing

to a specific topic.

The processing stages of each worker are illustrated in

https://doi.org/10.33103/uot.ijccce.24.1.7

 93

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

Fig. 4 including data collecting, data preparation, hyperparameters tuning, transformation, model

training, and model evaluating. These stages focus on preparing the time series data and optimizing the

hyperparameters of the LSTM network to overcome the challenges of obtaining an accurate forecasting

model for nonlinear and non-stationary demand time series.

FIG. 4. WORKER BASED PROCESSING STAGES.

A. Data Collecting

Each worker in the proposed DLSTM-MSF plays a crucial role in collecting time series data that

is related to the specific topic it subscribes to. As mentioned, the historical time series of the [13] is a

multivariant time series data. Thus, to convert it to univariant and enabling the distributed processing,

the streamer publishes those data into four specific topics. Upon subscription of each worker to a

specific topic, the workers continuously listen for new data records generated by the corresponding

media type, such as image, audio, video, or text. By adhering to their designated topics and leveraging

the capabilities of the Kafka Consumer API, each worker in the DLSTM-MSF system efficiently and

accurately collects the data required for forecasting workload patterns in multimedia streaming. As data

streams arrive, the workers extract relevant information from each tuple that is required to train the

forecasting model, which are timestamp, and the number of requests. These data points are vital for

understanding the temporal characteristics and demand patterns specific to the media type under

consideration. Furthermore, the workers store the collected data in a structured format for further

analysis and forecasting. To ensure real-time data processing, the workers are designed to efficiently

handle incoming data as it becomes available. This enables the workers to stay synchronized with the

data flow and capture the latest workload demands for their respective media types. Fig. 5 shows the

original observation and trends component of the collected media time series data by all workers.

B. Data Preparation

Due to the reality of each worker ingesting only the data related to a specific topic, the collected time

series of each worker may encourage a time gap. In addition, the collected data were streamed as a

string data time type that means several data preprocessing techniques are required including:

https://doi.org/10.33103/uot.ijccce.24.1.7

 94

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

 Structuring: To make the collected time series amenable to forecast, several processing steps

are performed, including parsing, cleaning, and resampling. Parsing involves converting the timestamp

of the collected data to a time-based data type. Additionally, the cleaning process deals with duplicated

values, where multiple instances have the same time value. Since time series forecasting requires unique

time instances, all duplicated values for the same time instance are aggregated. Finally, the resampling

process involves downsampling the data by aggregating the time frequency from a lower level to an

upper level to increase the data's worth. The time frequency of the collected data is summarized from

seconds to hours.

 Imputing: Due to the context of each worker ingesting only the time series related to its

subscription, often some time gaps occur. These gaps represent the absence of a specific event (request

for a specific media time). Therefore, zero imputation is utilized, which is a straightforward method to

replace the missing values with zeros, indicating the absence of a certain measurement during those

time points.

 Splitting: The collected time series is split into a training and testing set, with a thirty-day

training set and the last day as the testing set. The LSTM models are trained and optimized using the

training set and evaluated using the testing set.

 Scaling: Since most forecasting techniques show more promising forecasting ability with

normalized data, in this stage, the min-max normalization algorithm is utilized.

C. Hyperparameter Tuning

In this work, LSTM networks by Keras are adopted. However, achieving high performance with these

networks is not a straightforward task. To optimize this model, we need to search for high-impact

parameters to configure. We employ the widely-used grid search method, which allows us to explore

various combinations of hyperparameters comprehensively. Seven different hyperparameters were

adjusted during our experiments, as illustrated in Table III. Depending on the number of values for each

hyperparameters, a list of parameter combinations is generated and utilized for data transformation

along with model configuration and training.

https://doi.org/10.33103/uot.ijccce.24.1.7

 95

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

FIG. 5. THE OBSERVED AND TREND COMPONENT OF THE IMAGE, TEXT, VIDEO, AUDIO REQUEST FOR ONE WEEK.

TABLE III. HYPERPARAMETERS SEARCH SPACE

Hyperparameter Name Values

Lag size [3, 4, 5, 6]

The number of nodes [50, 100, 150, 200]

Epochs number [25, 50, 100, 125]

Batch size [2, 3, 4]

Activation function [tanh, relu, sigmoid]

Learning rate [0.001, 0.01, 0.1]

Number of layers [1, 2]

D. Transforming

Based on the selected lag and batch sizes observed in the previous stage, the time series data is re-

formed into a structure of input/output points. By this form, the time series data be suitable for

supervised learning, making it ready for training the LSTM network.

E. Models Training

The proposed DLSTM-MSF approach is mainly designed to improve the performance of the LSTM

model. Initially, a single LSTM network is designed and trained using the best set of selected

hyperparameters. The LSTM network employs the Adam algorithm as the optimizer, and the Mean

Squared Error (MSE) as the loss function. Subsequently, two ensembled versions of the LSTM network

are created named Ensemble V1 and Ensemble V2. In Ensemble V1, two LSTM models are

independently trained, each utilizing a distinct subset of the training set. Similarly, in Ensemble V2,

three LSTM models are trained independently on different subsets of the data. The ensemble LSTM

models are implemented using the Bagging technique [38]. By training multiple models on diverse

subsets, the ensemble can effectively capture various patterns in the data and mitigate overfitting.

F. Model Evaluation

https://doi.org/10.33103/uot.ijccce.24.1.7

 96

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

Two performance metrics including root mean square error (RMSE) and mean absolute error

(MAE) are applied to evaluate the efficiency of all the LSTM models, the single LSTM mode, and the

two versions of the ensemble LSTM model. The average magnitude of error is computed by RMSE and

average magnitude of that error irrespective to its direction is calculated by MAE [39]. They computed

using the Eq. 6 and 7 respectively.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (6)

𝑀𝐴𝐸 =
1

𝑛
 ∑|�̂�𝑖𝑖

− 𝑦𝑖|

𝑛

𝑖=1

 (7)

In both equations, 𝑛 depicts the data observations, while 𝑦𝑖 and �̂�𝑖 denoted to the

original and forecasted value at time point 𝑖 respectively. The testing set is used in this stage

to evaluate the three models and find which provide the minimum RMSE and MAE.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section discusses the results of implementing the DLSTM-MSF. The Kafka server (v. 3.2.0)

is utilized which composed of one producer (streamer) and four consumers (workers). Virtual machines

with Ubuntu are utilized to build our cluster. Table IV illustrates the cluster nodes characteristics.

TABLE IV. CLUSTER NODES CHARACTERISTICS

Parameter Streamer Worker

Operating System Ubuntu 20.04.4 LTS Ubuntu 20.04.4 LTS

Processor 2.00 GHz Intel(R) Core (TM) i7 2.00 GHz Intel(R) Core (TM) i7

Memory 12 GB 12 GB

The implementation used the Python programming language (3.9.5) with the necessary data

manipulation and analysis libraries to prepare the data, and the Keras and Tensorflow packages to

design the LSTM models.

Each worker subscribes to a specific topic under which the corresponding data is streamed. Then

the collected data is prepared to be transformed into supervised data. The Keras ‘TimeseriesGenerator’

class is utilized to re-form the collected time series into a structure of input/output points. This class

automatically reshapes the time series data into a format suitable for supervised learning, making it

ready for training the LSTM network.

The transformation process is affected by the number of lag and batch size hyperparameters that

are selected. Table V illustrates the optimized value of hyperparameters obtained from the grid search

process of each worker. These hyperparameters are selected based on their ability to minimize the

RMSE.

TABLE V. THE BEST SET OF THE SEARCHED LSTM NETWORKS HYPERPARAMETERS FOR DIFFERENT TIME SERIES

Hyperparameter Name
Hyperparameter Value

Worker (1) Worker (2) Worker (3) Worker (4)

https://doi.org/10.33103/uot.ijccce.24.1.7

 97

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

(Image workload time

series)

(Text workload time

series)

(Video workload

time series)

(Audio workload time

series)

Lag size 4 4 3 4

The number of nodes 150 100 50 150

Epochs number 50 50 50 50

Batch size 3 3 2 4

Activation function Relu Relu Relu Relu

Learning rate 0.001 0.001 0.001 0.001

Number of layers 2 2 1 1

Based on the selected lag size and batch size, the ‘TimeseriesGenerator’ class generates

overlapping sequences of length equal to lag size from the original time series data. For example, with

a lag size of 4, each time series points sequence of length 4 is used as input to predict the subsequent

time step, which becomes the output. Furthermore, with a batch size of 3, the parameters of the model

will be updated after three instances. A subset of the created input/output pairs for the four time series

data are illustrated in

Table VI, VII, and VIII. These input/output pairs create a supervised learning dataset, which is

suitable to learn the LSTM network. The ti in these tables refers to the time series point in i time.

TABLE VI. A SUBSET OF INPUT/OUTPUT PAIRS INSTANCE FOR IMAGE AND TEXT WORKLOAD TIME SERIES

 (FOR LAG=4, BATCH SIZE = 3)

Batch No. Input Output

1st {t1, t2, t3, t4} {t5}

{t2, t3, t4, t5} {t6}

{t3, t4, t5, t6} {t7}

2nd {t4, t5, t6, t7} {t8}

{t5, t6, t7, t8} {t9}

{t6, t7, t8, t9} {t10}

TABLE VII. A SUBSET OF INPUT/OUTPUT PAIRS INSTANCE FOR VIDEO (FOR LAG=3, BATCH SIZE = 2)

Batch No. Input Output

1st {t1, t2, t3} {t4}

{t2, t3, t4} {t5}

2nd {t3, t4, t5} {t6}

{t4, t5, t6} {t7}

TABLE VIII. A SUBSET OF INPUT/OUTPUT PAIRS INSTANCE FOR AUDIO WORKLOAD TIME SERIES (FOR LAG=4, BATCH SIZE = 4)

Batch No. Input Output

1st

{t1, t2, t3, t4} {t5}

{t2, t3, t4, t5} {t6}

{t3, t4, t5, t6} {t7}

{t4, t5, t6, t7} {t8}

2nd {t5, t6, t7, t8} {t9}

{t6, t7, t8, t9} {t10}

{t7, t8, t9, t10} {t11}

{t8, t9, t10, t11} {t12}

Through the utilization of the best-selected hyperparameter and the transformed data, the LSTM

models are designed and trained. A comparative study is conducted among the three models using

RMSE and MAE as an evaluation metric. To make a fair evaluation, all the designed models from all

https://doi.org/10.33103/uot.ijccce.24.1.7

 98

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

workers are trained with thirty-day time points and tested by one-day time points of the collected

dataset.

Fig. 6 shows the evaluation report for the adopted three models by all workers. All the designed

models by each worker are tested using the test set of the corresponding media time series.

The evaluation results highlighted the superiority of the Ensemble V1 model across all datasets.

The values of RMSE and MAE for this model in Image and Text demand forecasting are largely

consistent, measuring 0.09 and 0.077, respectively. Meanwhile, for Video demand forecasting, these

values are 0.067 and 0.052, respectively. However, despite the Ensemble V1 outperforming other

models in Audio demand forecasting, its performance isn't as impeccable as it is in the case of the other

three media demand forecasts. This discrepancy is due to the inherent fluctuations present in the Audio

time series data. Fig. 7 depicts the performance of the three models’ training and test fit over the

corresponding time series.

The primary objective of the proposed DLST-MSF is to establish a distributed environment ready

for forecasting multimedia streaming's workload demand. Historical data form the foundation of this

endeavor, drawn from the workload pattern of requests. These historical data originate from a previous

deployment that predicts multimedia data types through content analysis [13]. This utilization employed

a machine learning (ML) algorithm, which addresses the limitations of semantic and non-semantic

parsing (e.g., non-ML) methods by leveraging ML's statistical classification capabilities. This

pioneering analysis marks the first instance of streaming data analysis.

FIG. 6. THE EVALUATION REPORT OF THE THREE MODELS BASED ON EACH WORKER: TIME-SERIES PAIR.

Furthermore, the proposed DLST-MSF's validity in workload demand forecasting is substantiated

through a comparative analysis with recent approaches. In our survey, all studies employed performance

metrics, resource utilization metrics, or system logs as historical data except [17], [21], which were

employed historical workload patterns. Within the realm of Big Data (BD) streaming, historical

workload patterns assume particular significance. As streaming involves real-time data ingestion, these

patterns become critical for comprehending variations. While resource utilization and performance

metrics maintain relevance, workload patterns address the dynamic nature of streaming. They play a

pivotal role in guiding real-time resource provisioning decisions by unveiling workload fluctuations

and patterns.

The authors in [17], [21] employ historical data extracted based on identifying workload via

examination of the magic numbers (file extensions) in data request blocks. To accomplish this, they

https://doi.org/10.33103/uot.ijccce.24.1.7

 99

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

utilize a statistical approach to ascertain workload types. Their approaches heavily depend on semantic

parsing of the workload, which is deemed limited due to its reliance on a multi-file identification tool

that struggles to generalize across various types of work. Unfortunately, no such tool is universally

effective across all file types. Additionally, any method hinging on file signatures for type identification

loses effectiveness in cases of data corruption. Implementing this method becomes challenging when

confronting big data streams in practical scenarios. Moreover, they utilize the Kalman Filter (KF) for

forecasting workload demand, dealing with linear dynamics and Gaussian noise data. However, in the

realm of big data streaming, such as multimedia streaming, non-linear and stochastic data prevail. As

such, these limitations underscore the need for alternative approaches to surmount the challenges and

provide media workload pattern data that significantly influence the workload demand forecasting

process. Hence, the aforementioned non-predictive time series approaches and those founded on

performance metrics and resource utilization metrics exhibit evident limitations in comparison to our

proposal.

FIG. 7. FORECASTING RESULTS FROM THREE MODELS OVER THE FOUR MEDIA TIME SERIES DATA.

VII. CONCLUSIONS AND FUTURE WORK DIRECTIONS

The focal point of LSTM network models lies in their potential for forecasting workload demand,

thereby enhancing the resource manager's decision-making. To this end, we proposed a DLSTM-MSF

approach, leveraging both a straightforward LSTM model and an ensemble LSTM model (a composite

of LSTM models). The implementation of DLSTM-MSF was executed on the Apache Kafka server.

Renowned for its capability to ensure data stream delivery and ordering, Apache Kafka proves ideal for

latency-critical applications like real-time workload demand prediction.

The hyperparameters of the LSTM model were calibrated using the adopted time series data. A

stimulus streamer was developed to stream time-series data encompassing the count of requests for four

distinct types of media streaming over the course of a month. For this context, four workers were

developed, each tasked with the preparation and forecasting of a specific media time series—Image,

Text, Video, or Audio.

https://doi.org/10.33103/uot.ijccce.24.1.7

 100

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

The core responsibility of each worker involved determining the optimal hyperparameters for the

LSTM network relevant to its time series data following its preparation. Subsequently, each worker

devised and trained three network models utilizing the LSTM network, employing the optimal set of

hyperparameters. The evaluation results underscored the ensemble model's superior performance, based

on two LSTM networks, which outperformed other designed models. This superiority was evident in

its capacity to minimize error rates when forecasting unseen data for the upcoming day.

In future work, we hope to do the following:

 Aggregating the forecasting outcomes for the four-time series to derive statistical characteristics

pertinent to the workload. This endeavor will provide valuable insights into the workload's

dynamics, influencing the resource manager's decision-making process.

 Develop an optimization methodology tailored for the resource manager by leveraging the

identified workload characteristics. This method will guide the allocation and provisioning of

resources. The goal is to enhance resource utilization, thereby optimizing operational efficiency.

REFERENCES

[1] A. Evangelinou, M. Ciavotta, D. Ardagna, A. Kopaneli, G. Kousiouris, and T. Varvarigou, “Enterprise applications

cloud rightsizing through a joint benchmarking and optimization approach,” Future Gener. Comput. Syst., vol. 78, pp.

102–114, Jan. 2018, doi: 10.1016/j.future.2016.11.002. Available: http://dx.doi.org/10.1016/j.future.2016.11.002.

[2] A. Naseri and N. Jafari Navimipour, “A new agent-based method for QoS-aware cloud service composition using

particle swarm optimization algorithm,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 5, pp. 1851–1864, May

2019, doi: 10.1007/s12652-018-0773-8. Available: http://dx.doi.org/10.1007/s12652-018-0773-8.

[3] B. Sniezynski, P. Nawrocki, M. Wilk, M. Jarzab, and K. Zielinski, “VM reservation plan adaptation using machine

learning in cloud computing,” J. Grid Comput., vol. 17, no. 4, pp. 797–812, Dec. 2019, doi: 10.1007/s10723-019-

09487-x. Available: http://dx.doi.org/10.1007/s10723-019-09487-x.

[4] M. Adhikari and T. Amgoth, “Multi-Objective Accelerated Particle Swarm Optimization Technique for

Scientific workflows in IaaS cloud,” in 2018 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), IEEE, Sep. 2018. doi: 10.1109/icacci.2018.8554584.

Available: http://dx.doi.org/10.1109/icacci.2018.8554584.

[5] J. Yang, W. Xiao, C. Jiang, M. S. Hossain, G. Muhammad, and S. U. Amin, “AI-powered green cloud

and data center,” IEEE Access, vol. 7, pp. 4195–4203, 2019, doi: 10.1109/access.2018.2888976.

Available: http://dx.doi.org/10.1109/access.2018.2888976.

[6] P. Nawrocki and P. Osypanka, “Cloud resource demand prediction using machine learning in the context

of QoS parameters,” J. Grid Comput., vol. 19, no. 2, Jun. 2021, doi: 10.1007/s10723-021-09561-3.

Available: http://dx.doi.org/10.1007/s10723-021-09561-3.

[7] H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “A framework for predicting airfare prices using machine learning,”

Iraqi Journal of Computer, Communication, Control and System Engineering, vol. 22, no. 3, pp. 81–96, Sep. 2022,

doi: 10.33103/uot.ijccce.22.3.8. Available: http://dx.doi.org/10.33103/uot.ijccce.22.3.8.

[8] A. Kumar, R. Shankar, and N. R. Aljohani, “A big data driven framework for demand-driven forecasting with effects

of marketing-mix variables,” Ind. Mark. Manag., Jun. 2019, doi: 10.1016/j.indmarman.2019.05.003. Available:

http://dx.doi.org/10.1016/j.indmarman.2019.05.003.

[9] Sukhpreet Kaur, Yogesh Kumar, and Sushil Kumar, “Soft Computing Techniques for Energy Consumption and

Resource Aware Allocation on Cloud: A Progress and Systematic Review,” in Advanced Soft Computing Techniques

in Data Science, IoT and Cloud Computing, Sujata Dash , Subhendu Kumar Pani , Ajith Abraham and Yulan Liang,

Ed., New York, NY: Springer, 2021, pp. 191–213.

[10] J. Kumar and A. K. Singh, “Workload prediction in cloud using artificial neural network and adaptive differential

evolution,” Future Gener. Comput. Syst., vol. 81, pp. 41–52, Apr. 2018, doi: 10.1016/j.future.2017.10.047. Available:

http://dx.doi.org/10.1016/j.future.2017.10.047.

[11] J. Gao, H. Wang, and H. Shen, “Machine learning based workload prediction in cloud computing,” in 2020 29th

International Conference on Computer Communications and Networks (ICCCN), IEEE, Aug. 2020. doi:

10.1109/icccn49398.2020.9209730. Available: http://dx.doi.org/10.1109/icccn49398.2020.9209730.

[12] M. Kulkarni, P. Deshpande, S. Nalbalwar, and A. Nandgaonkar, “Cloud computing based workload prediction using

cluster machine learning approach,” in Applied Computational Technologies, in Smart innovation, systems and

technologies. Singapore: Springer Nature Singapore, 2022, pp. 591–601. doi: 10.1007/978-981-19-2719-5_56.

Available: http://dx.doi.org/10.1007/978-981-19-2719-5_56.

https://doi.org/10.33103/uot.ijccce.24.1.7

 101

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

[13] S. D. Khudhur and H. A. Jeiad, “LSDStrategy: A lightweight software-driven strategy for addressing big data variety

of multimedia streaming,” IEEE Access, vol. 10, pp. 111794–111810, 2022, doi: 10.1109/access.2022.3215531.

Available: http://dx.doi.org/10.1109/access.2022.3215531.

[14] H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network for demand forecasting,”

Comput. Ind. Eng., vol. 143, no. 106435, p. 106435, May 2020, doi: 10.1016/j.cie.2020.106435. Available:

http://dx.doi.org/10.1016/j.cie.2020.106435.

[15] T. Mehmood, S. Latif, and S. Malik, “Prediction of cloud computing resource utilization,” in 2018 15th International

Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), IEEE, Oct. 2018. doi:

10.1109/honet.2018.8551339. Available: http://dx.doi.org/10.1109/honet.2018.8551339.

[16] Y. Yu, V. Jindal, F. Bastani, F. Li, and I.-L. Yen, “Improving the smartness of cloud management via

machine learning based workload prediction,” in 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), IEEE, Jul. 2018. doi: 10.1109/compsac.2018.10200. Available:

http://dx.doi.org/10.1109/compsac.2018.10200.

[17] N. Kaur and S. K. Sood, “Efficient Resource Management System Based on 4Vs of Big Data Streams,”

Big Data Research, vol. 9, pp. 98–106, 2017, doi: 10.1016/j.bdr.2017.02.002. Available:

https://www.sciencedirect.com/science/article/pii/S2214579616300909.

[18] P. W. Murray, B. Agard, and M. A. Barajas, “Forecast of individual customer’s demand from a large and noisy

dataset,” Comput. Ind. Eng., vol. 118, pp. 33–43, Apr. 2018, doi: 10.1016/j.cie.2018.02.007. Available:

http://dx.doi.org/10.1016/j.cie.2018.02.007.

[19] B. Sarıca, E. Eğrioğlu, and B. Aşıkgil, “A new hybrid method for time series forecasting: AR–ANFIS,” Neural

Comput. Appl., vol. 29, no. 3, pp. 749–760, Feb. 2018, doi: 10.1007/s00521-016-2475-5. Available:

http://dx.doi.org/10.1007/s00521-016-2475-5.

[20] A. R. S. Parmezan, V. M. A. Souza, and G. E. A. P. A. Batista, “Evaluation of statistical and machine

learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the

use of each model,” Inf. Sci. (Ny), vol. 484, pp. 302–337, May 2019, doi: 10.1016/j.ins.2019.01.076.

Available: http://dx.doi.org/10.1016/j.ins.2019.01.076.

[21] N. Kaur, S. K. Sood, and P. Verma, “Cloud resource management using 3Vs of Internet of Big data streams,”

Computing, vol. 102, no. 6, pp. 1463–1485, Jun. 2020, doi: 10.1007/s00607-019-00732-5. Available:

http://dx.doi.org/10.1007/s00607-019-00732-5.

[22] F. Martínez, M. P. Frías, M. D. Pérez-Godoy, and A. J. Rivera, “Dealing with seasonality by narrowing the training

set in time series forecasting with k NN,” Expert Syst. Appl., vol. 103, pp. 38–48, Aug. 2018, doi:

10.1016/j.eswa.2018.03.005. Available: http://dx.doi.org/10.1016/j.eswa.2018.03.005.

[23] J. Kumar, R. Goomer, and A. K. Singh, “Long short term memory recurrent neural network (LSTM-RNN) based

workload forecasting model for cloud datacenters,” Procedia Comput. Sci., vol. 125, pp. 676–682, 2018, doi:

10.1016/j.procs.2017.12.087. Available: http://dx.doi.org/10.1016/j.procs.2017.12.087.

[24] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production using deep LSTM recurrent networks,”

Neurocomputing, vol. 323, pp. 203–213, Jan. 2019, doi: 10.1016/j.neucom.2018.09.082. Available:

http://dx.doi.org/10.1016/j.neucom.2018.09.082.

[25] H. Shi, S. Hu, and J. Zhang, “LSTM based prediction algorithm and abnormal change detection for temperature in

aerospace gyroscope shell,” Int. J. Intell. Comput. Cybern., vol. 12, no. 2, pp. 274–291, Jun. 2019, doi: 10.1108/ijicc-

11-2018-0152. Available: http://dx.doi.org/10.1108/ijicc-11-2018-0152.

[26] F. Martínez, M. P. Frías, M. D. Pérez, and A. J. Rivera, “A methodology for applying k-nearest neighbor to time series

forecasting,” Artif. Intell. Rev., vol. 52, no. 3, pp. 2019–2037, Oct. 2019, doi: 10.1007/s10462-017-9593-z. Available:

http://dx.doi.org/10.1007/s10462-017-9593-z.

[27] D. Saxena and A. K. Singh, “Auto-adaptive learning-based workload forecasting in dynamic cloud

environment,” Int. J. Comput. Appl., pp. 1–11, Oct. 2020, doi: 10.1080/1206212x.2020.1830245.

Available: http://dx.doi.org/10.1080/1206212x.2020.1830245.

[28] J. Kumar, A. K. Singh, and R. Buyya, “Ensemble learning based predictive framework for virtual machine resource

request prediction,” Neurocomputing, vol. 397, pp. 20–30, Jul. 2020, doi: 10.1016/j.neucom.2020.02.014. Available:

http://dx.doi.org/10.1016/j.neucom.2020.02.014.

[29] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown, “Bayesian uncertainty modelling for cloud workload prediction,”

in 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), IEEE, Jul. 2022. doi:

10.1109/cloud55607.2022.00018. Available: http://dx.doi.org/10.1109/cloud55607.2022.00018.

[30] S. Bansal and M. Kumar, “Deep learning-based workload prediction in cloud computing to enhance the performance,”

in 2023 Third International Conference on Secure Cyber Computing and Communication (ICSCCC), IEEE, May 2023.

doi: 10.1109/icsccc58608.2023.10176790. Available: http://dx.doi.org/10.1109/icsccc58608.2023.10176790.

https://doi.org/10.33103/uot.ijccce.24.1.7

 102

Received 15/August/2023; Accepted 09/October/2023

DOI: https://doi.org/10.33103/uot.ijccce.24.1.7

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 1, March 2024

[31] J. Kumar and A. K. Singh, “Cloud Resource Demand Prediction using Differential Evolution based Learning,” in 2019

7th International Conference on Smart Computing & Communications (ICSCC), IEEE, Jun. 2019. doi:

10.1109/icscc.2019.8843680. Available: http://dx.doi.org/10.1109/icscc.2019.8843680.

[32] J. Chen and Y. Wang, “A resource demand prediction method based on EEMD in cloud computing,”

Procedia Comput. Sci., vol. 131, pp. 116–123, 2018, doi: 10.1016/j.procs.2018.04.193. Available:

http://dx.doi.org/10.1016/j.procs.2018.04.193.

[33] S. D. Khudhur and H. A. Jeiad, “A Content-based File Identification Dataset: collection, construction, and evaluation,”

Karbala int. j. mod. sci., vol. 8, no. 2, pp. 63–70, May 2022, doi: 10.33640/2405-609x.3222. Available:

http://dx.doi.org/10.33640/2405-609x.3222.

[34] A. Q. Albayati, A. S. Al-Araji, and S. H. Ameen, “A Method of Deep Learning Tackles Sentiment

Analysis Problem in Arabic Texts,” IJCCCE, vol. 20, no. 4, Oct. 2020, doi: 10.33103/uot.ijccce.20.4.2.

Available: https://www.uotechnology.edu.iq/ijccce/issues/2020/vol20/no.04/full-text/02.pdf.

[35] N. Reimers and I. Gurevych, “Optimal hyperparameters for deep LSTM-networks for sequence labeling tasks,” arXiv

[cs.CL], Jul. 21, 2017. Available: http://arxiv.org/abs/1707.06799.

[36] B. S. Panda, A. Misra, and S. S. Gantayat, “Methods and concepts of data mining techniques to impute missing data

information,” Far East J. Electron. Commun., vol. 20, no. 1, pp. 41–54, Apr. 2019, doi: 10.17654/ec020010041.

Available: http://dx.doi.org/10.17654/ec020010041.

[37] S. Agarwal, “Data Mining: Data Mining Concepts and Techniques,” in 2013 International Conference on Machine

Intelligence and Research Advancement, IEEE, Dec. 2013. doi: 10.1109/icmira.2013.45. Available:

http://dx.doi.org/10.1109/icmira.2013.45.

[38] T. Wang, Y. Li, W. Chang, and S. Zhou, “A bagging ensemble learning traffic demand prediction model based on

improved LSTM and transformer,” in Third International Conference on Computer Science and Communication

Technology (ICCSCT 2022), Y. Lu and C. Cheng, Eds., SPIE, Dec. 2022. doi: 10.1117/12.2662894. Available:

http://dx.doi.org/10.1117/12.2662894.

[39] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)?,” Feb. 28, 2014. doi:

10.5194/gmdd-7-1525-2014. Available: http://dx.doi.org/10.5194/gmdd-7-1525-2014.

https://doi.org/10.33103/uot.ijccce.24.1.7

