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Abstract— Cell formation plays a crucial role in the development of cellular 

manufacturing systems (CMS). Previous studies in this field have typically assumed that 

each part is associated with a single process plan. However, incorporating alternative 

routes offers additional flexibility in CMS design. This paper addresses the cell formation 

problem by considering alternative routes and presents a two-stage approach to address 

this problem. In the first stage, a Route Rank Index (RRI) is developed based on a 

correlation matrix to select the optimal alternative route for each part. Subsequently, a 

Genetic Algorithm (GA) is employed in the second stage to form part families and 

machine cells. The proposed approach's computational performance is evaluated using a 

set of generalized group technology datasets found in the existing literature. The results 

demonstrate that the proposed approach is highly effective and efficient when it comes to 

addressing the cell formation problem involving alternative routes. The ramifications of 

these findings in practice are substantial. Our suggested approach demonstrates its 

resilience and adaptability by achieving comparable or better grouping results across a 

wide variety of benchmark datasets. This shows the method can be used in a wide range 

of practical situations, including those involving matrices of varying sizes and shapes. 

The theoretical knowledge base on part-machine grouping strategies benefits from the 

comparison study. By comparing the results of our suggested method to those of well-

known heuristics, we shed light on its benefits and drawbacks.  

Index Terms— Route Rank Index; Alternative Routes; Cellular Manufacturing System; Cell 

Formation; Genetic Algorithm. 

I. INTRODUCTION 

A Cellular Manufacturing System (CMS) has the ability to manufacture different types of 

products or components in moderate-sized batches, resulting in reduced production costs associated 

with inventory management and material transportation [1][2]. The primary objective in creating an 

effective cellular manufacturing system is to establish part families and machine cells. This process, 

commonly known as the Cell Formation Problem (CFP), aims to group machines together based on 

specific product characteristics. Several common production factors are considered during the CFP, 

including minimizing the movement of components within and between cells, managing changes in 

cell workload, and exceptional elements, minimizing the number of voids, and selecting alternative 

routes [3][4]. The Generalized Cell Formation (GCF) problem, introduced by Kusiak [5], refers to a 

specific type of cell formation problem where the parts involved possess alternative routes. Kusiak 

[5]proposed a p-median model as a solution for addressing the cell formation issue while also 

considering the selection of alternative routes. 
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In order to provide a quantitative foundation for the cell formation problem with alternative 

routes, clustering algorithms based on the Similarity Coefficient Method (SCM) were developed. 

These algorithms utilize the SCM to measure the similarity between different parts or machines, 

allowing for the grouping of similar elements into clusters or cells. By considering alternative routes 

in the CFP, these algorithms offer an approach to objectively analyze and organize the manufacturing 

system based on the quantitative similarities among components [6][7]. 

On other hand, evolutionary algorithms have been utilized by researchers to address GCF 

problems. Wu, Chung, and Chang [8] introduced a hybrid simulated annealing algorithm with a 

mutation operator. Their approach aims to solve the GCF with the objective of reducing intercellular 

movements or maximizing grouping efficacy. Kao and Lin [9] proposed a two stage approach based 

on Particle Swarm Optimization (PSO). A discrete PSO algorithm is used in the first stage to divide 

machines into different cells, and part routing is assigned to each machine cell in the second stage 

with the goal of reducing the incidence of exceptional elements. Hashemi et al. [10] also used an 

innovative approach based on particle swarm optimization for cell formation problems with multiple 

routes. The goal was to minimize the number of moves between cells. A case study with 30 parts, 17 

machines, and 62 different routings was used to evaluate if the PSO-based approach could get the 

near-optimal solution. For sequential machine CFP, Hazarika [11]suggested hybrid particle swarm 

optimization (HPSO) to reduce the intercellular movements of parts.Seven famous issues from the 

literature were computationally evaluated. Computational results show that the suggested approach 

provides solutions in representations of intercellular movement of parts that are either superior to or 

more aggressive than those obtained using alternative approaches.  

Shiyas and Pillai  [12] addressed the GCF problem using a Genetic Algorithm (GA) based on 

grouping efficacy. They aimed to find an optimal solution for the GGT problem by considering the 

effectiveness of the grouping. while Kao and Chen [13] developed an automatic clustering method. 

Their method focuses on automatically grouping machines and parts based on predefined criteria. 

Hazarika & Laha [14] developed a GA meta-heuristic to solve cell formation problems with multiple 

alternative processing routes, sequences of processes, and part volumes. Their objective was to 

minimize the total intercellular movements of parts based on the optimal alternative processing route. 

The study was conducted on five benchmark issues, and the outcomes demonstrated that the 

performance of the suggested approach was either competitive or superior to the existing methods in 

terms of optimal route selection and total intercellular movements of parts.  

Sowmiya et al. [15] suggested a three-stage heuristic. In the first stage, utilizing the suggested Route 

Rank Index (RRI), which is a ranking metric that is obtained from the correlation among the 

alternative routes (CoRa—Correlation-based ranking), the optimal alternative route is chosen for each 

component. The second step involves locating machine-part cells to optimize the efficiency of the 

grouping process. In the final phase, a tuning module verifies the completeness of the covering set. 

For 25% of the test instances, the alternative routes suggested by CORA resulted in greater grouping 

efficacy, and for the remaining 75% of test instances, the grouping efficacy attained was as excellent 

as the best findings reported in the literature. 

It is clear that most of the previous and current approaches to cell formation have a number of 

drawbacks, such as difficulties in acquiring acceptable solutions for large issues, significant 

processing time, and trouble in getting excellent solutions for ill-structured matrices. Another issue is 

that the solution is usually of low quality. While some of these techniques do well when dealing with 

data that can be easily categorized, others struggle when dealing with ill-structured data. On the other 

hand, the majority of solutions to the generalized cell formation issue remain constant for the entirety 

of the planning horizon. When there is a need to process a new part, the demand for additional 

equipment emerges in order to meet the capacity requirements.  

https://doi.org/10.33103/uot.ijccce.24.1.2
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This paper contributes to the existing literature on GCF problems in the following way: 

developing a two-stage approach to identify the optimum part-machine GCF by maximizing group 

efficacy, where utilizing the route rank index based on a correlation matrix for selecting the best 

alternative route for each part in the first stage. In the second stage,  a genetic algorithm was 

developed to form part families and machine cells. 

The rest of this paper is structured in the following manner:  Section II outlines the definition of 

the problem and performance measure. The proposed approach steps Section III. A numerical 

example is presented in Section IV to illustrate the proposed approach. The results are analyzed in 

Section V. Lastly, Section VI provides potential avenues for future research and offers conclusions. 

II. PROBLEM FORMULATION  

In the context of a given 0-1 part-machine incidence matrix, cell formation involves reordering 

its rows and columns to establish part families and machine cells. Researchers typically aim to find an 

arrangement that minimizes intercellular movement while maximizing machine utilization within 

each cell. Many existing cell formation methods assume that each part has only one alternative route, 

which is not realistic in manufacturing systems. Cases where each part may have alternative routes, as 

illustrated in Fig. 1, further complicate the cell formation problem. Consequently, the problem 

requires addressing the selection of the best alternative route, formation of part families, and creation 

of machine cells simultaneously. Kumar and Chandrasekaran [16] proposed the use of Grouping 

Efficacy (GE) as a metric to evaluate the quality of part-machine grouping as follow: 

𝐸 =
𝑒 − 𝑒𝑜

𝑒 − 𝑒𝑣
                             (1) 

Where e refers to the total number of ones in the part-machine matrix. The number of exceptions is 

given by eo, and the number of voids is given by ev. 

 

 
                                               FIG.1. PART-MACHINE INCIDENCE MATRIX WITH ALTERNATIVE ROUTES. 
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III. PROPOSED APPROACH 

A proposed approach is developed to solve the cell formation problem in CMS with the presence 

of alternative routes. The developed approach involves two stages: in the first stage, a route rank 

index based on a correlation matrix for selecting the best alternative route for each part and a genetic 

algorithm developed to form part families and machine cells in the second stage. Fig. 2 depicts the 

sequential steps of the proposed approach in the form of a flow chart. 

A. Rank Route Index 

A measure for ranking is computed using the correlation between different alternative routes. 

This ranking measure is used to select the most suitable alternative route for each part. The correlation 

between two route for any part, R1, and R2, is determined by calculating the ratio of the covariance of 

R1 and R2 to the product of their standard deviations and is denoted as Corr (R1, R2) [17]: 

𝐶𝑜𝑟𝑟(𝑅1, 𝑅2) =
𝐶𝑜𝑣(𝑅1, 𝑅2)

√𝑉𝑎𝑟(R1) × 𝑉𝑎r( 𝑅2)
                           (2) 

Where Cov (𝑅1, 𝑅2) = Covariance of the vectors R1 and R2. Var(R1) = Variance of the vector 

R1. Var(R2) = Variance of the vector R2. The covariance of the routes R1 and R2 is defined as: 

Cov (𝑅1, 𝑅2) = E(𝑅1 𝑅2) − (E(𝑅1) × E(𝑅2))                  (3) 

Where E (𝑅1 𝑅2) = Expected value of R1 and R2. E(R1) = Expected value of R1. E(R2) = 

Expected value of R2. 

The MATLAB software provides a convenient "corrcoef" function that enables the calculation of 

the correlation matrix for alternative route options. To identify a compatible set for each alternative 

route of a part, the set of alternative routes from other parts that are positively correlated with it is 

determined. If an alternative route lacks any positive correlation with other routes, it is not assigned a 

compatible set. The route rank index is utilized to determine the best set of compatible alternative 

routes. The calculation of RRI involves adding up the correlation values of all potential pairs within 

each compatible set. The RRI of a compatible set comprising "R" alternative routes is calculated as 

shown below [15]: 

𝑅𝑅𝐼 = ∑ C + (2𝐶 − 1)                         (4) 

∀ 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑠𝑒𝑡 

Here, C represents the correlation value associated with every pair of alternative routes. 

The compatible set that has the highest RRI is selected as the best compatible set. If there are 

multiple compatible sets with the same maximum RRI value, all of those compatible sets are taken 

into consideration. If the first compatible set is selected, it must be removed from the part machine 

incidence matrix. The procedure described above will be applied iteratively to the reduced part 

machine incidence matrix in order to determine the best alternative route for each part. 

B. Genetic Algorithm 

In the context of cell formation, GA can be applied by following a series of steps [18][19]: 

Step 1: Set GA parameters: 

Number of parts (P), number of machines (M), part-machine incidence matrix [xij], the population size 

of machine chromosome and the population size of part chromosome (Npop), maximum number of 

generations (Gmax), generation count (GC), machine cell (MC), and part family (PF), weighting 

factor (0 ≤ q ≤1), probability of crossover (Pc), and probability of mutation (Pm). 

Step 2: Determine the integer values of M/2 and P/2, rounding them up to the nearest integer. Then, 

calculate the minimum value between the two and consider it as the maximum number of cells (MC). 

https://doi.org/10.33103/uot.ijccce.24.1.2
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Step 3: Create an initial population for the machine chromosome by randomly allocating machines to 

distinct cells within the range of 1 to MC.  

Step 4: For each machine chromosome and part chromosome, determine the part and machine that 

have the maximum number of operations by following these steps: 

Step 4.1: Create machine cells based on the genes present in the machine chromosome. 

Step 4.2: Create part families based on the machine cells by following the provided guidelines: 

 

FIG. 2. FLOWCHART FOR THE PROPOSED APPROACH. 

https://doi.org/10.33103/uot.ijccce.24.1.2
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1- Allocate the part to a machine cell where it can undergo the highest number of operations. 

2- In the event of a tie for the utmost number of parts the machine can process, break the tie at 

random. 

Step 4.3: If the number of machine cells (MC) is equal to the number of part families (PF), calculate 

the fitness function (GE), and proceed to Step 4.5. However, if the number of machine cells is not 

equal to the number of part families, move to Step 4.4. 

Step 4.4: Create machine cells using the part families obtained in Step 2, following the provided 

guidelines: 

1- Allocate a machine to the part family in which it can process the greatest quantity of parts. 

2- In the event of a tie for the utmost number of parts the machine can process, break the tie at 

random. 

Step 4.5: If the number of machine cells is equal to the number of part families, calculate the fitness 

function (GE) and proceed to Step 5. However, if the number of machine cells is not equal to the 

number of part families, move to Step 4.2. 

Step 5: Arrange the part families machine cells together in descending order based on their fitness 

function values (GE). 

Step 6: Select the top 30% of the sorted population, rounding the number to the nearest even value, 

and assign this subpopulation the size of Npop2. 

Step 7: For each pair of consecutive part chromosomes and machine chromosomes, carry out the 

following steps: 

1- To generate two offspring, perform a two-point crossover operation on the given individuals. 

2- Mutate each of the machines and parts offspring with a mutation probability of 0.30. 

3- In the case where a machine offspring has missing machine cell numbers, it should be fixed 

accordingly. This process involves modifying the machine offspring to ensure that the 

machine cell numbers are consecutive and start from the number 1 onwards. 

4- If a part offspring contains missing part family numbers, repair the specific part offspring by 

adjusting the part family numbers. This repair process ensures that the part family numbers 

are consecutive and start from the first family onwards. 

5- To ensure an equal number of part families and machine cells, apply additional repairs to 

either the part offspring or the machine offspring. 

6- Calculate the density index [Dij] or all machine and part offspring using the following 

equation [20]:  

𝐷𝑖𝑗 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 −  𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑒𝑙𝑙

𝑆𝑖𝑧𝑒 𝑜𝑓𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 − 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑐𝑒𝑙𝑙
                    (5) 

Step 8: GC = GC + 1. 

Step 9: If GC ≤ Gmax, proceed to Step 5. 

Step 10: Present the results obtained from the topmost machine chromosome and part chromosome 

after implementing step 7.6. Show the corresponding part and machine chromosome, along with the 

grouping efficacy. 

IV. NUMERICAL EXAMPLE 

The numerical example is taken from Bhide et al.[21] containing 8 parts, 20 alternative routes, 

and 9 machine types. Fig. 1 shows the part-machine incidence matrix. The first step in selecting the 

best alternative route begins by calculating the correlation matrix using Eqs. (2 & 3). The correlation 

matrix of the alternative routes, computed using the 'corrcoef' function provided in the MATLAB 

software, is presented in Table I. From Table I, a compatible set is determined for each alternative 

route of a part through the identification of alternative routes other of parts that exhibit a positive 

https://doi.org/10.33103/uot.ijccce.24.1.2
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correlation with it. This compatible set is described by the color blue in Table I. Table II provides a 

comprehensive overview of the details pertaining to the list of compatible sets. After compatible sets 

are identified, The most optimal compatible set of alternative routes is determined by employing the 

route rank index specified in Eq. (4).For example, consider the first compatible set from Table III i.e., 

P11, P21, P31, P42, P52, P71, P81; the possible pairs are [{P11 P21}, {P11 P31}, {P11 P42}, {P11 

P52},{P11 P71},{P11 P81},{P21 P31}, {P21 P42},{P21 P52},{P21 P71},{P21 P81},{P31 

P42},{P31 P52}, {P31 P71},{P31 P81},{P42 P52},{P42 P71},{P42 P81},{P52 P71},{P52 

P81},{P71 P81}]. The RRI for the first compatible set is calculated as follows: 

RRI= [{C P11 P21+ ((2× C P11 P21) -1)} + {C P11 P31+ ((2× C P11 P31) -1)} + {C P11 P42+ ((2× C P11 P42) -1)} + 

{C P11 P52+ ((2× C P11 P52) -1)} + {C P11 P71+ ((2× C P11 P71) -1)}+ {C P11 P81+ ((2× C P11 P81) -1)}+ {C P21 

P31+ ((2× C P21 P31) -1)}+ {C P21 P42+ ((2× C P21 P42) -1)}+ {C P21 P52+ ((2× C P21 P52) -1)}+ {C P21 P71+ ((2× 

C P21 P71) -1)}+ {C P21 P81+ ((2× C P21 P81) -1)}+ {C P31 P42+ ((2× C P31 P42) -1)}+ {C P31 P52+ ((2× C P31 P52) 

-1)}+ {C P31 P71+ ((2× C P31 P71) -1)}+ {C P31 P81+ ((2× C P31 P81) -1)}+ {C P42 P52+ ((2× C P42 P52) -1)}+ {C 

P42 P71+ ((2× C P42 P71) -1)}+ {C P42 P81+ ((2× C P42 P81) -1)}+ {C P52 P71+ ((2× C P52 P71) -1)}+ {C P52 P81+ 

((2× C P52 P81) -1)}+ {C P71 P81+ ((2× C P71 P81) -1)}]. 

The correlation value of each pair of alternative routes is given as follows: 

C P11 P21=0.55; C P11 P31=0.10; C P11 P42=0.35; C P11 P52=0.55; C P11 P71=1.0; C P11 P81=0.06; C P21 P31=0.55; 

C P21 P42=0.8; C P21 P52=0.1; C P21 P71=0.55; C P21 P81=0.06; C P31 P42=0.8; C P31 P52=-0.35; C P31 P71=0.10; C 

P31 P81=0.06; C P42 P52=-0.10; C P42 P71=0.35; C P42 P81=-0.06; C P52 P71=0.55; C P52 P81=0.06; C P71 P81=0.06. 

RRI= [{0.55+ ((2× 0.55) -1)} + {0.10+ ((2× 0.10) -1)} + {0.35+ ((2× 0.35) -1)} + {0.55+ ((2× 0.55) -

1)} + {1.0+ ((2× 1.0) -1)} + {0.06+ ((0.06) -1)} +  … …+ {0.55+ ((2× 0.55) -1)} + {0.06+ ((2× 0.06) -

1)} + {0.06+ ((2× 0.06) -1)}] = -2.58  

Fig. 3 provides a comprehensive explanation of the procedure used to determine the RRI value 

for the first compatible set. Similarly, the RRI value was computed for all compatible sets, and the 

results are presented in Table III. Based on the data in Table III, the third set stands out as the best 

compatible set, possessing the highest RRI value. Consequently, it serves as the best alternative route 

for parts P1, P2, P5, P7, and P8. Following that, the initial part machine incidence matrix displayed in 

Fig. 1 underwent a removal of the best alternative route. The resulting part machine incidence matrix 

is presented in Table IV. This new part machine incidence matrix will then go through the 

aforementioned procedure repeatedly until the optimal alternative route for each remaining part is 

determined. Table V exhibits the correlation matrix for the updated part machine incidence matrix, 

while Table VI displays the identified compatible sets along with the corresponding RRI value. From 

Table VI, the best compatible set with the maximum RRI value is the third set, which serves as the 

best alternative route for parts P3, P4, and P6. The covering set for the initial part machine matrix is 

given below: 

Covering set = {P13, P22, P32, P41, P51, P62, P72, P82} 

The binary matrix with one alternative route for each part is shown in Table VII. After obtaining 

the binary part machine incidence matrix, the GA basic parameters employed for solving the CMS 

design problem consist of a crossover probability of 0.5, a mutation probability of 0.2, a population 

size of 50, and a maximum number of generations set to 500[19]. The genetic algorithm was created 

using the MATLAB R2017b software on a personal computer equipped with an Intel Core i5 CPU 

with a speed of 2.4 GHz and 8 GB of RAM. Table VIII presents the part-machine incidence matrix 

obtained by using GA. 
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V. RESULTS AND DISCUSSION 

Table IX presents the details of the comparative analysis between the proposed approach and 

other existing approaches to verify the quality of the solutions generated by the proposed approach. 

This analysis utilizes 14 benchmark datasets obtained from various sources in the literature. The 

benchmark datasets used cover a wide range of sizes, from small matrices measuring 4 × 8 × 4 to 

large matrices measuring 20 × 51 × 20. Furthermore, these datasets contain both well-structured and 

unstructured matrices, allowing for a thorough assessment of the performance of the proposed 

approach. In order to gauge how well the suggested approach performs, it has been put up against two 

popular heuristics, HSAM2 [8] and CORA [15]. The results show that our suggested approach 

outperformed the CORA heuristic for grouping in two datasets (14%), and performed similarly in the 

remaining twelve datasets (86%). However, when compared to the HSAM2 heuristic, our suggested 

approach produced a higher grouping efficacy value for 3 datasets (21.5%) and a similar value for the 

remaining 11 datasets (79.5%). These results have significant real-world implications. Our suggested 

approach demonstrates its resilience and adaptability by achieving comparable or better grouping 

results across a wide variety of benchmark datasets. This shows the method can be used in a wide 

range of practical situations, including those involving matrices of varying sizes and shapes. The 

theoretical knowledge base on part-machine grouping strategies benefits from the comparison study. 

By comparing the results of our suggested method to those of well-known heuristics, we shed light on 

its benefits and drawbacks. The findings provide support to the theoretical basis of our approach and 

demonstrate its promise as an applicable approach for classifying machine parts grouping. 

VI. CONCLUSIONS 

This paper introduces a two-stage approach for addressing the cell formation problem with 

alternative routes. A route rank index is used in the first stage to find the best alternative route, and a 

genetic algorithm is employed in the second stage to create part families and machine cells. In order 

to assess the efficacy of the proposed approach, a comparative analysis was conducted to evaluate its 

performance relative to the HSAM2 and CORA heuristics. The experimental analysis involves testing 

the proposed approach on matrices of various sizes, ranging from small (4 × 8 × 4) to large (20 × 51 × 

20). The matrices covered well-structured and unstructured formats, giving a thorough evaluation of 

the approach's potential. The comparison results show that, in terms of grouping efficacy, the 

proposed approach either matches or beats the HSAM2 and CORA heuristics. This shows how well 

the proposed approach has worked to address the generalized cell formation problem. The evaluation 

of the approach focused primarily on grouping efficacy and may not capture all aspects of efficiency 

and productivity within a manufacturing system. Other performance metrics, such as machine 

utilization and machine flexibility, were not considered in this study. Therefore, the overall impact of 

the proposed approach on manufacturing systems may require further investigation using a broader set 

of performance measures. Additionally, the experimental analysis only included matrices of sizes 

ranging from small to large, and their performance on extremely large matrices remains unexplored. 

Future studies should consider assessing the scalability and applicability of the approach to even 

larger and more complex problem instances. Overall, future research should aim to expand upon the 

current study by exploring various performance metrics and conducting experiments on larger 

problem instances to further validate and enhance the proposed approach's applicability and 

effectiveness in solving the cell formation problem with alternative routes. 
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TABLE I. CORRELATION MATRIX OF THE ALTERNATIVE ROUTE 

P P11 P12 P13 P21 P22 P23 P31 P32 P41 P42 P51 P52 P61 P62 P71 P72 P73 P74 P81 P82 

P11 1.00 -0.63 0.32 0.55 0.32 -0.16 0.10 0.10 0.10 0.35 -0.16 0.55 -0.63 -0.16 1.00 -0.16 0.10 0.10 0.06 -0.48 

P12 -0.63 1.00 0.00 -0.16 0.00 0.50 -0.16 -0.16 -0.16 -0.32 0.00 -0.63 0.50 0.00 -0.63 0.50 0.32 0.32 0.19 0.76 

P13 0.32 0.00 1.00 -0.16 1.00 0.50 -0.16 -0.63 -0.63 -0.32 0.50 -0.16 0.00 -0.50 0.32 0.50 0.32 0.32 -0.38 0.19 

P21 0.55 -0.16 -0.16 1.00 -0.16 0.32 0.55 0.55 0.55 0.80 -0.63 0.10 -0.16 0.32 0.55 -0.63 0.55 -0.35 0.06 -0.48 

P22 0.32 0.00 1.00 -0.16 1.00 0.50 -0.16 -0.63 -0.63 -0.32 0.50 -0.16 0.00 -0.50 0.32 0.50 0.32 0.32 -0.38 0.19 

P23 -0.16 0.50 0.50 0.32 0.50 1.00 0.32 -0.16 -0.16 0.16 0.00 -0.63 0.50 0.00 -0.16 0.00 0.79 -0.16 -0.38 0.19 

P31 0.10 -0.16 -0.16 0.55 -0.16 0.32 1.00 0.55 0.55 0.80 -0.63 -0.35 -0.16 0.32 0.10 -0.63 0.10 -0.35 0.06 -0.48 

P32 0.10 -0.16 -0.63 0.55 -0.63 -0.16 0.55 1.00 1.00 0.80 -0.63 0.10 -0.16 0.32 0.10 -0.63 0.10 -0.35 0.06 -0.48 

P41 0.10 -0.16 -0.63 0.55 -0.63 -0.16 0.55 1.00 1.00 0.80 -0.63 0.10 -0.16 0.32 0.10 -0.63 0.10 -0.35 0.06 -0.48 

P42 0.35 -0.32 -0.32 0.80 -0.32 0.16 0.80 0.80 0.80 1.00 -0.79 -0.10 -0.32 0.16 0.35 -0.79 0.35 -0.55 -0.06 -0.60 

P51 -0.16 0.00 0.50 -0.63 0.50 0.00 -0.63 -0.63 -0.63 -0.79 1.00 0.32 0.50 0.00 -0.16 0.50 -0.16 0.32 -0.38 0.19 

P52 0.55 -0.63 -0.16 0.10 -0.16 -0.63 -0.35 0.10 0.10 -0.10 0.32 1.00 -0.16 0.32 0.55 -0.16 -0.35 0.10 0.06 -0.48 

P61 -0.63 0.50 0.00 -0.16 0.00 0.50 -0.16 -0.16 -0.16 -0.32 0.50 -0.16 1.00 0.50 -0.63 0.00 0.32 -0.16 -0.38 0.19 

P62 -0.16 0.00 -0.50 0.32 -0.50 0.00 0.32 0.32 0.32 0.16 0.00 0.32 0.50 1.00 -0.16 -0.50 -0.16 -0.16 0.19 -0.38 

P71 1.00 -0.63 0.32 0.55 0.32 -0.16 0.10 0.10 0.10 0.35 -0.16 0.55 -0.63 -0.16 1.00 -0.16 0.10 0.10 0.06 -0.48 

P72 -0.16 0.50 0.50 -0.63 0.50 0.00 -0.63 -0.63 -0.63 -0.79 0.50 -0.16 0.00 -0.50 -0.16 1.00 -0.16 0.79 0.19 0.76 

P73 0.10 0.32 0.32 0.55 0.32 0.79 0.10 0.10 0.10 0.35 -0.16 -0.35 0.32 -0.16 0.10 -0.16 1.00 -0.35 -0.48 0.06 

P74 0.10 0.32 0.32 -0.35 0.32 -0.16 -0.35 -0.35 -0.35 -0.55 0.32 0.10 -0.16 -0.16 0.10 0.79 -0.35 1.00 0.60 0.60 

P81 0.06 0.19 -0.38 0.06 -0.38 -0.38 0.06 0.06 0.06 -0.06 -0.38 0.06 -0.38 0.19 0.06 0.19 -0.48 0.60 1.00 0.36 

P82 -0.48 0.76 0.19 -0.48 0.19 0.19 -0.48 -0.48 -0.48 -0.60 0.19 -0.48 0.19 -0.38 -0.48 0.76 0.06 0.60 0.36 1.00 
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TABLE II. COMPATIBLE SETS 

Compatible set The compatible set Members 

1. P11, P21, P31, P42, P52, P71, P81 

2. P12, P23, P61, P72, P82 

3. P13, P22, P51, P72, P82 

4. P21, P11, P31, P42, P52, P62, P71, P81 

5. P22, P13, P51, P72, P82 

6. P23, P12, P31, P42, P61, P73, P82 

7. P31, P11, P21, P42, P62, P71, P81 

8. P32, P11, P21, P41, P52, P62, P71, P81 

9. P41, P11, P21, P32, P52, P62, P71, P81 

10 P42, P11, P21, P31, P62, P71 

11. P51, P13, P22, P61, P72, P82 

12. P52, P11, P21, P32, P41, P62, P71, P81 

13. P61, P12, P23, P51, P73, P82 

14. P62, P21, P31, P41, P52, P81 

15. P71, P11, P21, P31, P42, P52, P81 

16. P72, P12, P22, P51, P82 

17 P73, P12, P23, P31, P42, P61, P82 

18. P74, P12, P22, P51, P81 

19. P81, P12, P21, P31, P41, P52, P62, P74 

20. P82, P12, P22, P51, P61, P72 

 

 

FIG. 3. PICTORIAL DESCRIPTION FOR RRI CALCULATION. 
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         TABLE III. RRI VALUE FOR EACH COMPATIBLE SET 

Compatible set The compatible set Members RRI 

1. P11, P21, P31, P42, P52, P71, P81 -2.58 

2. P12, P23, P61, P72, P82 1.669 

3. P13, P22, P51, P72, P82 4.469 

4. P21, P11, P31, P42, P52, P62, P71, P81 -4.64 

5. P22, P13, P51, P72, P82 4.469 

6. P23, P12, P31, P42, P61, P73, P82 -9.55 

7. P31, P11, P21, P42, P62, P71, P81 -3.02 

8. P32, P11, P21, P41, P52, P62, P71, P81 -5.51 

9. P41, P11, P21, P32, P52, P62, P71, P81 -2.51 

10 P42, P11, P21, P31, P62, P71 1.873 

11. P51, P13, P22, P61, P72, P82 1.536 

12. P52, P11, P21, P32, P41, P62, P71, P81 -5.51 

13. P61, P12, P23, P51, P73, P82 -1.06 

14. P62, P21, P31, P41, P52, P81 -5.42 

15. P71, P11, P21, P31, P42, P52, P81 -2.58 

16. P72, P12, P22, P51, P82 1.669 

17 P73, P12, P23, P31, P42, P61, P82 -9.55 

18. P74, P12, P22, P51, P81 -5.56 

19. P81, P12, P21, P31, P41, P52, P62, P74 -21.8 

20. P82, P12, P22, P51, P61, P72 0.236 
 

                              TABLE IV. THE REDUCED PART MACHINE INCIDENCE MATRIX 

PR M1 M2 M3 M4 M5 M6 M7 M8 M9 

P31 1 0 1 0 1 0 0 1 0 

P32 1 0 1 1 0 0 0 1 0 

P41 1 0 1 1 0 0 0 1 0 

P42 1 0 1 1 1 0 0 1 0 

P61 0 1 0 0 0 0 1 1 0 

P62 1 0 0 0 0 0 1 1 0 
 

TABLE V. CORRELATION MATRIX FOR REDUCED PART MACHINE INCIDENCE MATRIX 

PR P31 P32 P41 P42 P61 P62 

P31 1 0.55 0.55 0.8 -0.158 0.3162 

P32 0.55 1 1 0.8 -0.158 0.3162 

P41 0.55 1 1 0.8 -0.158 0.3162 

P42 0.8 0.8 0.8 1 -0.316 0.1581 

P61 -0.158 -0.158 -0.158 -0.316 1 0.5 

P62 0.3162 0.3162 0.3162 0.1581 0.5 1 
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 TABLE VI. COMPATIBLE SETS AND RRI VALUE FOR REDUCED PART MACHINE INCIDENCE MATRIX 

Compatible set The compatible set Members RRI 

1. P31, P42, P62 0.823025 

2. P32, P42, P62 1.423025 

3. P41, P32, P62 1.897367 

4. P42, P31, P62 0.823025 

5. P62, P31, P41 0.547367 

            TABLE VII. BINARY MATRIX OBTAINED FROM THE FIRST STAGE 

P/M M1 M2 M3 M4 M5 M6 M7 M8 M9 

P1 0 1 0 0 1 0 0 0 1 

P2 0 1 0 0 1 0 0 0 1 

P3 1 0 1 1 0 0 0 1 0 

P4 1 0 1 1 0 0 0 1 0 

P5 0 1 0 0 0 0 1 0 1 

P6 1 0 0 0 0 0 1 1 0 

P7 0 1 0 0 0 1 0 0 1 

P8 0 1 0 0 0 1 0 0 0 

               TABLE VIII. PART FAMILIES AND MACHINE CELLS AFTER APPLYING STAGE TWO 

P/M M1 M3 M4 M7 M8 M6 M2 M5 M9 

P3 1 2 3 0 4 

    P4 1 2 3 0 4 

    P6 1 0 0 2 3 

    P8 

     

2 1 

  P1 

      

1 2 3 

P2 

      

1 2 3 

P5 

   

2 

  

1 0 3 

P7 

     

2 1 0 3 

TABLE IX. COMPARISON RESULTS 

Reference Size (P×R×M) HSAM 2 CORA Proposed Approach 

Won and Kim [22] 4×8×4 100 100 100 

Kusiak [23] 5×11×4 90 90 90 

Moon and Chi [24] 6×13×6 83.33 83.33 83.33 

Cao and Chen [13] 7×14×6 NA 95.45 95.45 

Garbie et al. [25] 7×14×10 NA 66.67 66.67 

Bhide et al. [21] 8×20×9 NA 69.70 70.9* 

Sankaran and Kasilingam [26] 10×20×6 72.22 72.22 72.22 

Won and Kim [22] 10×23×7 81.48 81.48 81.48 

Adil et al. [27] 10×24×10 82.86 83.33 83.33 

Won and Kim [22] 10×22×11 80.65 80.65 80.65 

Shiyas and Pillai [28] 20×27×8 NA 77.78 77.78 

Sofianopoulou [29] 20×26×12 49.47 50 50 

Sofianopoulou [29] 20×45×14 54.29 54.64 55.77* 

Nagi et al. [30] 20×51×20 79.52 79.52 79.52 

NA: Not Available 
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