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Abstrac This paper proposes a predictive nonlinear PID neural voklage
tracking controller designfor Proton Exchange Membrane Fuel Cell (PEMFC)
Model with an ofine autctuning intelligent algorithm. The purpose of the
proposed robust feedback nonlinear PID neural predictive voltage controller is
to find the optimal value of the hydrogen partial gsare action in order to
control the stack terminal voltage of the (PEMFC) model for -stepahead
prediction. The Chaotic Particle Swarm Optimization (CPSO) is utilized as a
stable and intelligent robust eéime autotuning algorithm to obtain the near
optimal weights for the proposed controller so as to improve the performance
index of the system as well as to minimize the energy consumption. The
Simulation results demonstrated the effectiveness of the proposed controller
compared with the linear PID neal controller.

Index Term® Chaotic Particle Swarm OptimizatipnFuel Cell, Nonlinear PID Neural
Controller.

I. INTRODUCTION

In recent years, fuel cells have been widely used due to their electrochemical nature, where the fuel
cells generate the electric power as a result of a chemical reaction in which oxygen and hydrogen are
used. Fuel cellgettheir chemicalcompoundso interact from naturgndthis distinguishethemfrom
other sources of the electricity power generafsuthas batterieand internatombustion engirg. In
addition, there are many advantages of fuel cells suctheg are considered as a clean source of
energy they causdess emissionwhich approacksto zerq and the work quietly. The fiel cellsare
mack up from two sides, the left side atitk right side where the left side is the entrancethe
hydrogen gas known d@iseanode side antthe other sidés known as the cathode, which is an input of
the oxygen gasThese sides are known as electrodes.dther content of fuel cells the electrolye.

The catalyst material covetle electrode§l]. The power generated from each single cell is less or
equal to one volt; therefara group of cellss conneced either sequentially oiin a parallelform to
generate the required poweandin this casethe groupof fuel cellsis calledthe stack According to
thetype of electrolytethe fuel cellsareclasdfied into many types such adirect methanol fuel cell,
alkaline fuel cellphoghoric acid fuetells, molten carbonate fuel cell, solid oxide fuel aeNersible

fuel cell and proton exchange membrane fuel ¢2]lsThe PEMFC is very interesting because it has
many qualifications such athePEMFC can be operatedrabmtemperaturef requiredow pressures,
and it haspeedy startip, quietoperation, mall size and high efficiendg], [4]. There are many factors
that affectthe work of fuel cells in the production of electric pow&herefore,in order to ensure the
generation of the greatesnergy several researchers suggestadouscontrol method to track the
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output voltage of the fuel cell stack when the load current is variabladingfuzzy logic controller

[5], optimal PEMFC based hybrid leang [6], cascade control [7fpbust neural network adaptive
control[8], support vector machine (SVM) [9faditional sliding mode controller [10], hybrid Taguchi
method and genetic algorithm neural networks [11], backtracking search algorithm combined with
Burger's chaotic map (BSABM) [12], second order sliding modéd3], etc To understandhe
implicated phenomena of fuel cglinany kinds of intelligent algorithrreee usegdsuchasSalp Swarm
Optimizer (SSOJ14], particleswarm optimizatiorj15], geneticalgorithm[16], Bio-Inspired FPoton
Systems base@ptimizationAlgorithm (BIPOA) [17], andgrey wolf gotimization[18].

The motivation of this paper is to focus on the dynamic response of the PEM fuel cell sté@k and
stabilize the power output, especially when it wiéferent loadsn mobile applications. Furthermore,
the modeling representation of the PEMFC system and controlling the output voltage are still
challenging issug

The main contributiogiof this papeareto:

9 Study and analyze the PEM fuel cell opemtaystem in terms of the effect of each variable input
output such as hydrogen partial pressure, temperature and load current.
9 Design of a feedbadahkonlinear PIDneural controller witta prediction algorithm fobnestep ahead

to stabilize and tracthe desired output voltage of the fuel cell system in the transient state as well

as to get the optimalr near optimavalue of the hydrogen partial pressure control effort.

9 Improve and stabilize the output voltage perfanoea of the PEMFC systemsing an on-line
performance index evaluation

This papelis arrangeds follows: Section 2xplainsthe modelingof the PEMFC system. Section 3

illustratesthe predictive nonlinear PID neural network controll8ection 4 discussale numerical

results ofthe simulation forthe proposed controllelSection 5givesthe conclusions of #hproposed

controller.

[I. MODELING OF THE PEM FUEL CELLS

Due to the important role of fuel cells in many applicatjtmsy must be manufactured carefully
Hence this type of fuel cell isconsideedexpensive because both the membrandthe electrode
aremade up from platinurf6]. This type of fuel cefiis one of the importarand ecefriendly sources
of future power generatidB]. The main operain concepfor this type of fuel cei can bexplained
asillustratedin Fig. 1. In particularwhen the Hgas intershe PEM fuel cell fromtheleft side which
is calledtheanode it decay into two compoundsnamelypositive chemical compoungdsg/hich are
calledthe protons and negative chemical compoundsich arecalledthe electronsbecause othe
presence dtheplatinum catalyst. Only the positive compounds pass thateft to theright side [6]
[18].

The demical reaction aheleft sideis given by

OO0 1O 1Q (1)

Negative chemical compousdelectrons) transport through te&ternal electrical circuit to
generatethe electric signal. Positive and negative compounds react with oxygen from the air to
produce water anenergy as aasult ofthechemical reactiof6], [8].

The demical reaction aheright sideis given by

TQ 1O 0 ° ¢O0vu 2

The water produced by the chemical reaction must be managed in suchtaimagintairs the
PEMFC where the water pool on tleathode side leads to cell flooding and teds[3].
Each single cell producesienergy ranging from 0.9 to 1 volts. These few volts to operate
any systemThereforeto find a solutiorfor this problem, several studies have proposed linking cells
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in a parallel or sequential grougnd hencethe new name for this group is the stack. The operating
temperature of this typef cellsis around(50 to 80 C) [5], [6], [8]. For the purpose of modeling the
system controllers and simulating the power stagmodules usa polarization curvéhatshows the
relationship between voltage and curr@r).

> g =
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B=:>
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Membrane

FiG. 1. THE MAIN CONCEPT OFTHE PEMFC WORK[18].

The mathematical model &¢ie PEMFC can be calculated bying the equations belof@], [8], [18].

Vel = Vsteady~ Viransient 3
Vsteady= En —V onm (4)
Vtransien™= Vact+ Veon (5)

Where:V . represergthe output voltage of the fuel céll volt.

En: representghethermodynamic potentidh volt.

Vact isalow voltage due toheinteraction betweetheanode andhe cathodgvolt).

Vcon is theconcentration overvoltaga volt.

Vonm representghevoltage decline resdtifrom the impedance of the conduction of protons through
the electrolyte and of the electrons throtigéir pathin volt.

The important characteristics of the PEM&@taken fom [19], and theyareexplained in Tablé.

TABLE |. THE CHARACTERISTICS & PEMFC[19].

Parameters Values Units
Ncell 32 - -
T 298 Kelvin degree
A 64 o a
L pXWpT Ga
PHz 1-5 Atm
PG 0.2 Atm
Re 0.0003 Q
(04] 0.0169 Y,

| 0.948 - -

| -0.00312 - -

| X& pm T

| p&oc p T
J 0.0073 & 60 &
Jmax 0.469 & 60 &
) 23 - -
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The thermodynamic potential (JEcan be calculated by usitige equation below [19]:
O pRcwmPu pn Y coP @YY T Y afd® m 1 100 (6)

Where PH, is the partial pressure of hydrogen bar and PQ; is the partial pressure of
oxygenin bar.

Activation loss is the voltage falling because of the activity betwthe anode arttle cathod€19].
This type of lossscan be calculated as shown below:

® | | Y Y 1160 | Y 1 TO (7
Where
| is theload currenin Amper.

CQ; is the oxygen concentration dissolvi@ the surface ofhe cathodglohm /cnd).
CO: can be calculated usinige Henry law as shown in the equatidrelow[19].

(o]} . — (8

The voltage ofhe ohmic loss can be determinby usingtheequation below [19]20].
W oY Y 9
Where

Rm represerd the equivalent resistance dhe electron flow in ohm and R; represerd
the constant value dfie proton resistancie ohm

A A— (10)

Wh e r qdsthe ppecific resistance tifie membraneandit can be calculated usinige equation
below:

" g (11)

® roilp — (12)

Wher e, Psthe eepptype dependence parameter.
J represesstthe density ofhe current thapasesthrough the cel{Amper/nt).
Jmax explainghe maximum current density that pasthrough the cell19], [20], where

0 — (13)
Thetotal output voltage ofhe stack can bdetermned bythe equation below [19]20].
W 0 W (14)
Where, Ncellsymbolizes the number of stack.
The equation belovws usedo determine the overall output powier watt) from the stack:

0€0Q1 @ (15)
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lll. THE PREDICTIVE PID NEURAL CONTROLLER DESIGN

The controller proposed in this paper is a combinatigheyredictivenonlineameural network
with the PID controller, where the traditional PID control module is characterized by simplicity,
efficiency,but the traditioal PID control can not be usedrmulti-input multFoutput nonlinear system,
since this conbller with selttuning parameter techniques is necessary to use such systems to
overcome external disturbances and parameter variations that are impredictable and can not be
accurately modelledOn the other handyeural networks requira large training tme and a large
number of parameter setting&l], [22]. This type of contrglwhichcombines the faares ofthe PID
andthe Neural Networkleads tohigh performancendprovidesstrong and adaptive contlet. Fig
2 explainsthe main structure ahe predictive nonlinear PID neural network. The structurehef
nonlinear PID neural network coss of two parts, the first part egpts tha Nonlinear PID Neural
Nerwork (NPIDNN) and the second part explairthe on-line tuning algorithm. Based on the
chaacteristics of the PEMFC system operatitvere are three outputstbie PEMFC systermamely
the FuelCell stack output voltage (VFClhe temperature (T), anthe load current (J), while the
inputs ofthe PEMFC systenwhich control the operatiaof the Fuel Cellincludethehydrogen partial
pressure(PH,) controlled effort andhe oxygen partial pressure (PQwhich is considered as a
constant value in this proposeark.

PO2
Constant

Vdes 4 e (k)
»| NPIDNN PEM 5
A . Fuel Cell Voand |

N
A e(k1) Power output
kp ki |kd |ve

T

R CPSOAlIgorithm

FIG. 2. THE STRUCTURE OFT HE PROPOSED PREDICTIVERIONLINEAR PID NEURAL NETWORK.

A. Predictive Nonlinear PID Neural Network (NPIDNN) Controller Structure
Fig 3 explairs the construction ofhe predictive nonlinear PID neural networ&rdroller for
the PEM fuel cell.
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FiG. 3. THE PROPOSEONPIDNN CONTROLLER
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The above structure represeatmultilayer recurrent neural netwonkthich consists of three
layers The input layer consistof (e(k) ande(k-1)). The number of neurons thehidden layeis three
represenng the proportional, inegrd, and differential neurons. &dr kp, ki and kd gains are
calculated, thewre passito the outputayer. Theoutput layemses asigmoid functiornto calcuht the
weighted sum (representirige output othe hidden layer)asfollows:

E0MN 0 Q0 T Q0 QU p 0 Q0O Q0 p (16)

i Q — (17)

Where kp, ki, andkd arethe proportinal, integralandderivative gainsrespectively.

e(K) isthetracking error defined abediffrence between the desired output voltagedVandthe
actual output voltage (Vo).

The general equation tfe predective nolmear PID neural network controller is:

00 0 Vo@DQ p (18)

Where
PH(K) represerst thecontrol effort for one step ahead.
vc is theadustableweight fromthe PSO algorithm.

QT 00Q p | ®Q p (19

o a raré gafhavhose values angroposed tde 0.1, andhcrepresert avariable.
The learning algorithm is usually based on the minimization (withetgo the network weights) of
the followingobjective cost functigras intheequation below:

0 -B QQ p -B 0Qd® p w&Q p (20)

Where P represents thenumber of training points in the training sét presents the
sample number, i presents theratiion acount,e(k+1) denotesthe prediction model error at
each iteration among the true voltage output of the PEMFC theddesired output voltage
Vo is the actual output voltage of the fuel cell of each iteratiand \/geg represerg the

desiredoutput voltageat eachiteration.

B. The On-Line Auto-Tuning Intelligent Algorithm

The Paticale Swarm Optimization (PSO) is usadone of the modern stochastic search and
intelligent algorithns to train the nonlinear PID neural networkhe PSO algorithm is famoufor
providing solutions for many difficult optimization problemse to itspowerful search capabilities,
quick convergence, and easy implementatidre PSQgoalis to find and tune the best weights (kp,
ki, kd and vc)of thePID reural networkIn addition,to show the effectiveness in terms of number of
iterations for evaluating the objective cost function and the minimum value obtained for the mean
square error cost functipBquation (20)s usedHowever this algorithm becomes ineffective for two
reasonswhen there are many local optimum and because of the random nattive prticle
generationthe algorithm takes a long time to come close to the opsiatalion. To solve this problem
the PSOis hylridizedwith the chaos method to produesnew algorithm (CPSORjndthis algorithm
has the ability to approach tlegtimal solution iness number of iteratienTherefore the CPSO is
used tarainthe predictive nonlinear PID neural network.

Thesteps othe CPSO carbbe explaineds follows:
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The frst step:Define the PEMFC parameters suchttashydrogen partial pressure (Bkthe oxygen
partial pressure (PQ thetemperature (Thenumber of cel (Ncen), themaximum current (lay, and
thecurrent ofthecell (lcen).
The cond stepAdjust the maximum iteratiomumber and initializeparticles (kp, ki, kd and vc)
randomly.
The third step:Test the activation for each particle.
Based on the PSO procedure, the performance mainly deperitdsparameters, and it often leads to
be trapped in local optimum, in this state the partical is called active. But in other states the partical is
not be trapped in the local optimum and the speed of the particale is equal to zero, the partical in this
state is called inactive.

If the particle is active
1) Evaluate the cost function usitige mean square errgas shown in equation (20) above.
2) Update the velocity and position for each particle ugiegwo equations below [23]:

VDO p 08 Q o O ®Q o o w» Q (21)
QO p wQ 0o (22)

Where,d and@ are cognitive coefficients, andand g are two uniform random numbers.
Elsethepatrticle is inactive:

The CPSO algorithm worlkas follows

1) EstimatethelLogistic equation to find Ww[23], [24].

FQp “1TQp 1 7Q (23)

Where,' is equal to 4 as the control parameter therefore?, {0) 0.25, 0.5, 0.75, 1}.
x B x Zx X — (24)
0 I Q po (25)

2) Find abetter performance index (mean square error)
3) Update the particles usirige equations below [23]24].

DQp 0 & Q & D ®'Q oI o ® Q (26)
a0 p w0 Qo (27)

The forth step: Update the iteration counter. If ongéhefstopping criteria is satisfiethen stop, else
loop tothefirst step.

Fig 4 depictsa flonchart ofthe CPSO algorithm. After each samplitigne, the weights of the on
line nonlinear PID neural network are updated to minimize the error between the actuabbthiput
PEMFC model anthedesired voltage
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FIG. 4. A FLOWCHART OF THE CPSO ALGORITHM

IV. NUMERICAL SIMULATION RESULTS

The suggested form of the predictive nonlinear PID neural network contedllexplained iffrig.
2, is carried out by usinthe MATLAB m.file (2018) packageThe first stage in the controller design
is necessary to study and analyze the dynamécackeristics of the PEMFC system ths the
physical parameters shown in Table I. The first stisdp show the polarization curve of the output
voltage and the stack output power of the Fuel Calié@normal operation state durimfpanginethe
load currenfrom O A to 30 A while thehydrogenpartial pressure iat aconstantvalueof 1.0 bar, the
oxygen partial pressureas aconstant valuef 0.2 barand the temperature of the operation is constant
at 25C, asshownin Fig. (5, a and b). The maximum power of this model is bledrthe current which
is equal to 29 AFig 6 shows the polarization curve of the loss voltage in the Fuel Cell system during
changinghe load current from 0 A to 30 A.
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FIG. 6. THE DROPVOLTAGE IN THE FUELCELL SYSTEM AGAINSTTHE VARIABLE LOAD CURRENT.

The second study is to show the effect of thalrogenpartial pressurewhich changes
from 0.1 bar to 5 bar on the output voltage of the Fuel GEIC) operation duringchanging
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the load current of (FC) form 0 A to 30 A, while the temperature of the operation is
constant at 25C Fig 7 shows the output voltage of (FChich increaseswhen the
hydragen partial pressure increases toecduse the thermodynamic potential (EN) value of
the PEMFC systemindicated in equation (6) has been improved toward increasinghich

led to improvinghe performance of the Fuel Cell system.

30
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——PH2=2.0 bar
PH2=3.0 bar| |
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——PH2=5.0 bar| |
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—
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FIG. 7. THE FUEL CELL OUTPUTVOLTAGE SYSTEM AGAINST LOADVARIABLE CURRENT WHEN THE HYDROGEN PARTIALPRESSURE
IS CHANGED AGAINSTVARIABLE LOAD CURRENT.

The third study is to show the effect of the temperatuhich changes from 25 Qo 80
C° on the output voltage ofFC) operation duringchanging theload current of (FC) from 0
A to 30 A, but thehydrogenpartial pressure ikept asa constant value at 1.0 bar and the
oxygen partial pressure igeept asa constant value at 0.2 baFig 8 shows the output voltage
of (FC), which increases when the temperature increases tecaube the thermodynamic
potential (EN) value of the PEMFC systehras been improved toward increasinghich
redues the impact valueof the parameters on the loss voltage in the fuel cell systewh,
this led to improve the performance of the fuel cell systenHowever, increasing the
temperature of the fuel cebperationwill cause a loss of the necessaryhumidity for the cell
membranes, whiclkeads taa negative impact on the life of the fuel cell.
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FIG. 8. THE FUEL CELL OUTPUTVOLTAGE WHEN THE OPRRATION TEMPERATURE B CHANGED AGAINSTA VARIABLE LOAD
CURRENT.
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To establish the proposed controller design, there are twosstayeshould be achieved as
follows:
The first stage is to construct the nonlinB4D neural network PEMFC modakingthe multilayer
recurrent neural networks stture, as explained iRig. 3, to developthe PEMFC model system. In
stage twothe online CPSO algorithnis usedo tune the predictive nonlinear PID neural network.
When o and B are equal to zero and quatienol i near
thelinear PID neural network becosie

00 QN Q0 VO Q0 Q0 p O Q0 Q0 p (28)
The equation abovis calledthelinear PID neural network.

The online CPSO algorithniis used to tune the weights tife predictive (linear and nonlinear)
PID neural networkandTable IIshowsthe parameters adhe on-line CPSO:

TABLE II. PARAMETERS OFTHE ON-LINE CPSOALGORITHM.

Max. Min.
. . . . . The best
Numberof Par t i inertia inertia
Type of Controller . . . . aande riande number of
Particles weights weight  weight . .
iteratiors
Wmax Wmin
. Random
Nonlinear PID NN 20 4 0.7 0.3 1.496 ©0.1) 50
. Random
Linear PIDNN 20 3 0.7 0.3 1.496 ©.1) 50

In 125 samples, the desired output voltage required for the PEMFC system is changed in five phases
with theload currentwhich alsochangesn five stage®f (15, 10, 6, 15 and 1A), as shown irig. 9.
Fig 10 shows the one step ahead tbe predictive linear and nonlinear PID neural network, where in
the linearoneg the error is not equal to zero due to the small oscillation in the output wathouershoot
in thetransientstate as shown irFig. 10. The performance of the nonlinear PIDNN controller was
clear response in terms of the excellent tracking error of the actual output voltagddsired output
voltage at the different step chasgeithout oscillation when compared witie linear PIDNN
controller, as shown irrig. 10. Table 11l shows the dynamic characteristicstf@Linear and Nonlinear
PID Neural Network controllerduringonly the first step change. From this table, we can observe that
the nonlinear PIDNN controlldras gasterresponse ithetracking errocompared to thénear PIDNN
controller in terms of the rise time atitk settling time

16

15 N

[ S Y
— N~ w -
T T T T
I I L L

—
—
T

Fuel Cell Load Current (A)

NN 9 e
T
1

1 1 1 1 1 1
20 40 60 80 100 120
Samples (Sampling Time= 0.1sec)

FIG. 9. CURRENT VARIATION OF THE FC LOAD.
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FIG. 10. THE FUEL ACTUAL OUTPUT VOLTAGE OFPEMFUEL CELL FOR ONESTEP PREDICTIVEPID NEURAL NETWORK.

TABLE Ill . STEPRESPONSE CHARACTERISICS OFTHE LINEAR AND NONLINEAR PIDNN CONTROLLER

Type of Controller  Rise time Settling time  Overshoot Peak time

Nonlinear PID NN 0.0957 0.11 0 0.121

Linear PIDNN 0.0998 0.149 0 0.127

In the predictive linear PID neural network controller, for one step ghtedcontrol action
responséPH) is clealy not smooth for tracking the desired output voltageshown irFig. 11. While
in thenonlinear PIDNN controller, the control action leesnaoth responsandit wasable to track the
desired output voltage and minimize the steady state agahown irFig. 11.
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FIG. 11. THE FUEL CONTROL ACTDN FOR ONE STEP AHER FOR THELINEAR AND NONLINEAR PID NEURAL NETWORK.

Based orthe CPSO, the oiine performance of the mean square errothefpredictive linear
PIDNN controller for one step ahead is showhim 12, where the minimum value dieperformance
index reachsto 0053 On the other handhe online performance of the mean square errothef
nonlinear PIDNN controller for orstep ahead is equal ®0305.
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FIG. 12. THE VALUE OF THE ON-LINE OBJECTIVE COSTFUNCTION FOR ONE STE AHEAD PREDICTIVE UNEAR AND NONLINEAR PID
NEURAL NETWORK.

V. CONCLUSION

The numerical simulation results of the suggested predictive nonlinear PIDNN controllethvith
CPSOQalgorithmfor controllingthe nonlinear PEMFC system amesented in this paper. The proposed
nonlinear PIDNN controllecompared to thinear PIDNN controllethas many abilitie terms of (i)

Strong adapttionfor the controllerparametersvithout the overlearning problenbecausehe on-line

CPSO algprithnwas used(ii) Fast and smooth tuning algorithm which leads to no oscillation in the
model output (iii) High robustness behavior feine predictive nonlinear PIDNNcontroller when
generatinghe hydrogen partial action to follow the desired output voltage of the PEMFC system during
the load current variatien
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