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 Abstract- Being able to send different types of data (i.e. text, audio, or video) through the 

network is the most important aspect of networks. Different networks have different issues 

and restrictions while sending data. These restrictions are basically the QoS (Quality of 

Service) metrics and security. The recent Software-Defined Networking (SDN) that aims 

to separate the control plane from the data plane can be applied where Business 

requirements are not responsible for the way the network is configured; instead, it is the 

responsibility of the high-level business policies and objectives. SDN gives preferable 

techniques for centralized dynamic management and control configurations. In this work, 

a proposed model has been estimated and discussed to promote QoS requirements in some 

suggested topologies. Adaptive Resource Management (ARM) and control to send different 

types of data through different hosts have been investigated. The intended requirements 

are basically the capacity and delay of traffic metrics sent through different hosts through 

the network. It produces a mathematical model and implementation for three proposed 

algorithms to enhance the quality of a sample video sent from source host to destination 

host by Visible Light Communication (VLC)-media player in three different topologies. 

These algorithms (statistical, MOGA, and PSO) have been implemented using Mininet 

emulator, FNSS tool, PULP, and network libraries; with two types of controllers which 

are Floodlight and OVS under Linux operating system and in python programming 

language. 

Index Terms- SDN, Performance Evaluation, ARM, QoS, MOGA, PSO, FNSS, Mininet, Floodlight 

Controller, OVS Controller. 

I. INTRODUCTION 

       Many companies, industries and researches are now moving toward SDN technology in networking 

[1] because of the basic difficulty in traditional IP networks which is represented mainly in the 

complexity of management and configuration of all devices in the network. In other words, the source 

code of the configuration must be set up throughout all switches, routers, and other devices. Nowadays, 

implementing networks with SDN configuration doesn’t require that the configuration setup on all 

devices, instead, only the controller is responsible for controlling and managing the network [2]. This 

controller is the brain of the network and all control-plane data pass through to other forwarding devices 

which are in this case only dummy devices and is responsible only for transferring data (i.e. through the 

data-plane). The main point in SDN is that it separates the control plane (i.e. management plane) from 

the data plane (i.e. forwarding plane) [3].  

       The environment of SDN that is also known as Software-Defined Environment (SDE) is mainly 

responsible on the management of different resources in such networks [4]. Some of these resources 

include sending different types of data among network hosts [5], dynamic resource management for 

QoS [6], enabling High-Definition (HD)-map-assisted cooperative driving among Autonomous 

Vehicles (AVs) to improve the navigation safety [7], ensuring security of transferred data, etc. SDN 

and Network Virtualization (NVI) are widely considered promising techniques for reducing the 
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complexity of network management in many contexts that require high QoS and the support for 

heterogeneous architectures [8]. 

Resource Management (RM) can be optimized in different methods; some of these methods are the 

General MOGA that is used to handle multi-objective optimization problems in different search spaces 

[9]. 

       The rest of this paper is organized as follows: Section 2 shows some works that are related to the 

concept of this work, while section 3 discusses the basic problem definition that is to be explained and 

implemented in section 4. Finally, sections 5 and 6 review experimental results and conclusion, 

respectively. 

II. RELATED WORK 

       RM is very essential approach in all types of networks. Researchers in reference [10] can be 

considered as the first attempt for strict QoS requirements and manage the exchange among different 

network devices. RM mechanisms, provided by obtainable SDN approaches according to OpenFlow, 

have been summarized in reference [11]. Reference [9] used MOGA with PSO to eliminate the 

distributed controller placement problem that finds out the pareto optimal solutions minimizing the 

switch-to-controller load imbalance for wide area SDN. A general model has been produced and 

discussed; this model also considers switch assignments beside to dealing with the controller placement, 

and explains evaluations and results. Reference [12] is a paper about highlighting the comparative 

analysis of nature inspired Swam Intelligence based optimization techniques according to literature 

analysis and the areas where these algorithms have been most successfully applied. An investigation 

about the problem of saving energy in hybrid IP/SDN networks [13] where traditional IP nodes are 

incrementally replaced by SDN ones. Genetic Algorithms (GA) has been proposed and evaluated 

through simulations over realistic network topologies to solve this problem. The paper in reference [14] 

proposes a novel intelligent technique that has been designed to optimize the performance of SDN. The 

proposed hybrid intelligent system has employed integration of intelligence-based optimization 

approaches with the artificial neural network. These heuristic optimization methods include GA and 

PSO. 

III. PROBLEM DEFINITION 

       A network scenario has been considered in details in this section. A network 𝐺 (𝐸, 𝐿) is a graph of 

a datacenter topology implemented in python programming language under PULP basis and run in 

Mininet as an SDN with OVS and Floodlight controller. Where, 𝐿 =  {𝑙1, 𝑙2, … , 𝑙𝑛}  represents vertices 

(i.e. links available in each path in the topology) and 𝐸 =  {𝑒1, 𝑒2, … , 𝑒𝑚} represents edges of the 

proposed topology. Traffic flow description is described by a traffic matrix 𝑇𝑡 = (𝑠, 𝑑𝑒) sent from each 

source 𝑠 ∈  𝐸 to each destination 𝑑𝑒 ∈  𝐸 in the network in a specific time interval, 𝑡. Edges have 

capacities belonging to the set 𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝐿}. The goal is to find suitable capacity for each link in 

the topology regarding the primary delay 𝐷𝑙 of the link. Increasing the capacity of the link 𝑙𝑖 results in 

an increased bandwidth 𝐵𝑊 of the path which in turn reduces the total delay 𝐷𝑡 of the path between 

two hosts. 

       The issue is that when packet size is expanded, there will be more delays in packet delivery 

proportion. However, there must be some relationship between the amount of the capacity  𝑐𝑙 assigned 

to the link 𝑙 ∈  𝐿 and the packet size. In view of this suspicion, an Integer Linear Programming (ILP) 

that attempts to recognize a set of capacities 𝐶 assigned to vertices 𝑙 ∈  𝐿 dependent on packet size 

according to statistical regression approach is going to be presumed according to values of Fig. 1. 

Regression analysis has been made according to equation 1. 



 38 

Received 6 May 2019; Accepted 5 September 2019 

 

𝑦 = 𝑏𝑥 + 𝑎                                                            (1) 

       From the equation above and from the measured data, regression line equation can be calculated 

using equation 2 and thus the capacity of every link can be estimated relating to algorithm 1: 

 𝑐𝑙 = 13.1237 + 0.03436 ∗  𝐷𝑙              (2) 

ALGORITHM 1: STATISTICAL APPROACH PSEUDO CODE DESCRIPTION 

Input: network graph composed of edges and links 𝑮 = (𝑬, 𝑳) 

Output: optimal capacity for each link in the graph 

1 Import essential libraries 

2 Formulate G = (E, L) using FNSS library 

3   Set basic settings for the network 

4 For all 𝑙 in 𝐿 do 

5         𝑑 ← 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑙 

6         𝑐 =  𝑓(𝑑) 

7         𝑠𝑜𝑙 ← 𝑐 

8 End for 

9 Return  𝑠𝑜𝑙  

10 Draw the network with nx library or web UI 

11 Set video transferring properties 

12 Export to Mininet topology, launch the controller, and start the network 

13 Record results and evaluate the results 

14 Stop the network and clear all 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 𝑙𝑖𝑛𝑘𝑠 

 

 

FIG. 1: MEASURED DATA FOR ESTIMATION 

       The statistical approach has been implemented according to Algorithm 1 above. In the second 

approach (GA), the population is represented by the variable 𝑃 and its size is 𝐼. It is composed of a 

list of chromosomes represent random values of capacities𝑐 ∈  𝐶. Each chromosome 𝑐𝑝 ∈  𝑃 in the 

generated population 𝑃 represents a specific capacity and is represented by a set of genes in binary 

representation (for example𝑐𝑝 = 11001110 = 206 𝑀𝑏𝑝𝑠). The following is an example of 

crossover process for two different chromosomes:  

0 0 1 1 0 0 0 1 

 

1 1 0 0 1 1 1 1 

 

       After performing the single-point crossover process for these chromosomes, two children will 

be resulted as follows:  
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0 0 1 1 1 1 1 1 

 

1 1 0 0 0 0 0 1 

      Where child 1 is going to be the first capacity which is 63Mbps, while the second child represents 

a capacity of 193Mbps. Binary values are utilized to symbolize the two potential operational modes 

of each link, 𝑙 ∈  𝐿: 𝑔𝑙 = 0 (𝑝𝑜𝑤𝑒𝑟𝑒𝑑 𝑜𝑓𝑓); 𝑔𝑙 = 1 (𝑝𝑜𝑤𝑒𝑟𝑒𝑑 𝑜𝑛). The best solution 𝑠𝑜𝑙𝑐𝑝
 is 

achieved when the network configuration is able to route the set of traffic demands, 𝑇𝑡 = (𝑠, 𝑑𝑒)and 

be content with both conservation and delay 𝐷𝑙 limits. The fitness function (equation 3 bellow) is a 

multi-objective function (MO) of traffic demands 𝑇𝑡 that are transferred from source to destination. 

It is composed of subtracting the capacity 𝑐𝑝 from the target 𝑡 multiplied by the state 𝑔𝑖 and delay 

𝐷𝑙 of the link 𝑙 ∈  𝐿. 

        𝑓(𝑐𝑝,, 𝐺, 𝑇𝑡) = (𝑡 − 𝑐𝑝 )𝑔𝑙𝐷𝑙  ; ∀𝑙 ∈ 𝐿; 𝑔𝑙  ∈ {0; 1}        (3) 

       The innate genetic functions of GA (selection, crossover, mutation and replacement) are 

repeated for ƿ generations to response with the preferable solution 𝑠𝑜𝑙. The crossover is based on 

one-point selection by dividing each parent into two halves and then performing the crossover by 

copying everything before this point from the first parent to the second parent. Algorithm 2 bellow 

describes the pseudo code of GA approach, where 𝑓(𝑐𝑝, 𝐺, 𝑇𝑡) is computed according to equation 3 

above. 

ALGORITHM 2: GA PSEUDO CODE DESCRIPTION 

Input: network graph composed of edges and links 𝑮 = (𝑬, 𝑳) 

Output: optimal capacity for each link in the graph 

1 Import essential libraries 

2 Formulate G = (E, L) using FNSS library 

3   Set basic settings for the network 

4  𝑃 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐺, 𝐼) 

5 For all 𝑐𝑝 in 𝑃 do 

6         (𝑓𝑣𝑎𝑙𝑐𝑝) ← 𝑓(𝑐𝑝, 𝐺, 𝑇𝑡) 

7 End for 

8  Compute avfitness 

9 Do{ 

10            𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑃, 𝑟𝑎𝑛𝑘 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) 

11            𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝𝑜𝑖𝑛𝑡) 

12            𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑛𝑜𝑛 −  𝑢𝑛𝑖𝑓𝑜𝑟𝑚) 

13             𝑃 ← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) 

14            For all 𝑐𝑝 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do 

15                   (𝑓𝑣𝑎𝑙𝑐𝑝, 𝑠𝑜𝑙𝑐𝑝) ← 𝑓(𝑐𝑝, 𝐺, 𝑇𝑡) 

16             End for 

17             Compute avfitness 

18             𝑠𝑜𝑙 ← 𝑠𝑜𝑙𝑐𝑝          

19             ƿ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_avfitness − previous_avfitness 

20 }While (ƿ < 10-6) 

21 Return  𝑠𝑜𝑙  

22 Draw the network with nx library or web UI 

23 Set video transferring properties 

24 Export to Mininet topology, launch the controller, and start the network 

25 Record results and evaluate the results 

26 Stop the network and clear all 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 𝑙𝑖𝑛𝑘𝑠 

 

Child 2 

Child 1 
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       The accordance of a parent 𝐴𝑐𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑖 (equation 4 below) is calculated by finding the 

preferable fitness value 𝑓 corresponding to the global best position. 

𝐴𝑐𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑖  = 𝑓𝑡 Gbest/𝑓𝑖    (4) 

General PSO algorithm uses equation 5 to find current velocity of the particle according to the 

previous velocity and last position P𝑙. 

 V𝑐 = 𝑤 V𝑙 + 𝑐1𝑟1(𝐿𝑏𝑒𝑠𝑡 −  P𝑙) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 −  P𝑙)         (5) 

 P𝑐 =  V𝑐 +  P𝑙          (6) 

 V𝑐 = 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 −  P𝑙)          (7) 

       Where 𝐿𝑏𝑒𝑠𝑡 is the local best position of the particle, 𝑤 represents inertia of a particle [15],  

𝑐1, 𝑟1 and𝑐2𝑟2  are the amount of experience to be learned from 𝐿𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡, respectively, 𝑟1, 𝑟2 

are random variables in (0,1) range, and finally,  P𝑐 in equation 6 above is the current position of the 

particle based on its last position and velocity. Since each particle in our mutation function only runs 

one cycle, the  𝑤 that takes the weight of last velocity and the local best position does not mean 

anything in our situation, the first two parts of equation 5 are dropped, and a new equation 7 has 

been created to calculate the velocity. Algorithm 3 illustrates the pseudo code description of the PSO 

approach.  

ALGORITHM 3: PSO PSEUDO CODE DESCRIPTION 

Input: network graph composed of edges and links 𝑮 = (𝑬, 𝑳) 

Output: optimal capacity for each link in the graph 

1 Import essential libraries 

2 Formulate G = (E, L) using FNSS library 

3   Set basic settings for the network 

4  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑠𝑤𝑎𝑟𝑚(𝐺, 𝐼) 

5 For each 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in 𝑠𝑤𝑎𝑟𝑚 do 

6         (𝑓𝑣𝑎𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) ← 𝑓(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑡, 𝑇𝑡) 

7 End for 

8  Compute avfitness 

9 Do{ 

10      For each  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  in  P  do 

11              Compute Accordance  

12              Arrange 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 According to their Accordance 

13              𝑣𝑐𝑝 ← 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝐺𝑏𝑒𝑠𝑡, 𝑝𝑙) 

14              𝑝𝑐  ← 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑣𝑐𝑝, 𝑝𝑙) 

15              𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑝𝑙 , 𝑝𝑐) 

16      For each 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in 𝑠𝑤𝑎𝑟𝑚 do 

17             (𝑓𝑣𝑎𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) ← 𝑓(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑡, 𝑇𝑡) 

18      End for 

19  Compute avfitness 

20   ƿ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_avfitness − previous_avfitness 

21 }While (ƿ < 10-6) 

22 Draw the network with nx library or web UI 

23 Set video transferring properties 

24 Export to Mininet topology, launch the controller, and start the network 

25 Record results and evaluate the results 

26 Stop the network and clear all 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 𝑙𝑖𝑛𝑘𝑠 
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IV. Experimental Results 

      The proposed models and algorithms illustrated in the previous section have been implemented and 

tested on three different datacenter topologies and dumbbell topology with two controllers which are 

Floodlight and OVS and the adaptive resource management has been tested on two different video 

streams (their properties are illustrated in Table 1) played on VLC media player. 

TABLE 1: DETAILED PARAMETERS OF TESTED VIDEO FILES 

Video File Detailed Parameters 

Video 1 

Video Format MP4 

Duration 26 second 

Total File Size 2,100,396 bytes 

Resolution 320x240 

Video 2 

Video Format MP4 

Duration 18 second 

Total File Size 1,804,076 bytes 

Resolution 640x360 

  

      As mentioned earlier, we have implemented different tiers of Data Center (DC) topologies 

infrastructure which are two and three tiers with five edges, two hosts per edge, and different number 

of cores (i.e. one, two, three, and five cores). It is worth mentioning that the number of aggregation 

switches has been considered to be a constant value of two. We have also implemented fat tree 

topologies with two levels, two and four levels. Finally, dumbbell topology has also been 

implemented with two values (four and ten) of nodes in each bell and two values (five and ten) of 

nodes in the path. This design implementation has been done with the FNSS library using the 

following commands: 

fnss_topo = fnss.two_tier_topology(n_core=1, n_edge=5,  

                                   n_hosts=2) 

fnss_topo = fnss.three_tier_topology(n_core=1,  

                                     n_aggregation=2,  

                                     n_edge=5, n_hosts=2) 

fnss_topo = fnss.fat_tree_topology(2) 

fnss_topo = fnss.dumbbell_topology(4, 5) 

       The capacity of each link has been set adaptively relating to link delay and according to the 

proposed models explained previously in chapter three; the following command represents a 

function call for the already built-in solutions: 

set_capacities_packet_delay(fnss_topo, buffer_unit='bytes',   

                             capacity_unit='Mbps')  

       Now, we have built a complete FNSS scenario and it is ready to be converted to Mininet using 

the following command: 

mn_topo = fnss.to_mininet(fnss_topo, relabel_nodes=True) 

       The complete topologies designed and implemented with both OVS and Floodlight controllers 

using the following commands, respectively: 

net = Mininet(topo=mn_topo, link=TCLink,  

              controller= OVSController) 

net = Mininet(topo=mn_topo, controller=RemoteController,    

               link=TCLink) 

fController=net.addController(name='floodlightController'    

                             ,controller= RemoteController           
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                                                                              ,ip='127.0.0.1',port=6653) 

       The complete SDN topologies can be now run and tested to evaluate tested resources adaptively 

according to proposed solutions. Selected topologies executed with OVS controller can be drawn 

using networkx library; while those executed with Floodlight controller can be exhibited in both 

networkx and web UI by the REST API facility which shows a more flexible graphs, as shown in 

Fig. 2. It is important to mention that according to our hardware properties, we have discovered that 

OVS controller can implement and run only one-core and two-level DC topologies while Floodlight 

controller can implement and run different number of cores and levels for the same topologies. We 

design and implement one, two, three, and five cores for both two and three tiers, two and four levels 

for fat tree DC topologies, and dumbbell topology with two values for nodes in each bell (four and 

ten) and for nodes in the path (five and ten). 

  
2-Tier 1-core Topology 3-Tier 2-core Topology 

  

4-level Fat-Tree Topology Dumbbell (5,4) Topology 

FIG. 2: DIFFERENT EXAMPLES OF IMPLEMENTED TOPOLOGIES  

 

The throughput results of implemented scenarios have been improved from to 11.82Mbps-14.22Mbps 

and to 11.9Mbps- 13.583Mbps, to 119.2Mbps-128.96Mbps and to 110.425Mbps-114.158Mbps, and to 

201.8Mbps-209.6Mbps and to 216.417Mbps-225.583Mbps in Floodlight and OVS controllers 

respectively and for the statistical, GA, and PSO approaches, respectively. File transfer duration (Fig. 

3) between sender and receiver (measured in seconds) has been computed according to the following 

formula: 
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𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑖𝑙𝑒 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑎𝑡𝑒
    (8) 

Where, total file size is the file size in bytes (referring to Table 1) and the actual file transfer rate is in 

bytes per second. 

  
(a) transfer duration for the video 1 (b) transfer duration for the video 2 

FIG. 3: TRANSFER DURATION RATE FOR TESTED VIDEO STREAMS 

      According to collected data, the average mean packet delay was reduced by 85.31% in floodlight 

controller and 86.46% in OVS controller in the statistical approach as shown in Fig. 4, while it was 

91.42% in OVS controller and 91.58% in floodlight controller as shown in Fig. 5, and finally, it was 

95.48% in OVS controller and 95.52% in floodlight controller as shown in Fig. 6. The enhancement 

of the proposed solutions on tested video streams is shown in Fig. 7. 

 

 

FIG. 4: MEAN PACKET DELAY OF THE STATISTICAL APPROACH USING BOTH OVS AND FLOODLIGHT CONTROLLERS 
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FIG. 5: MEAN PACKET DELAY FOR GA USING BOTH OVS AND FLOODLIGHT CONTROLLERS 

 

 

FIG. 6: MEAN PACKET DELAY FOR PSO USING BOTH OVS AND FLOODLIGHT CONTROLLERS 
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(c) Video 1 after implementing the statistical 

approach 

(d) Video 2 after implementing the statistical 

approach 

  

(e) Video 1 after implementing GA approach (f) Video 2 after implementing GA approach 

  
(g) Video 1 after implementing PSO approach (h) Video 2 after implementing PSO approach 

FIG. 7: PERFORMANCE EVALUATION FOR TWO TESTED VIDEO STREAMS 

V. CONCLUSION 

    Two animation videos have been used in this research to test the performance of the proposed 

solutions. These videos were the Big Buck Bunny with a total file size of 2.1 Mbytes, resolution 

320x240 and its length is 26 seconds, the frame rate is 15, and the same video with a total file 

size of 5.2 Mbytes, frame rate 25, resolution 640x480 and its length is 30 second. The other 

test video was a sample animation video with a total file size of 1.8 Mbytes, resolution 

640x360, frame rate 25 and its length is 18 seconds. The test on the set of the chosen topologies 

was made by sending these videos between two hosts and capturing the performance of each 

approach. The VLC media player was the application used to display the tested videos on both 

hosts. The purpose of this research is to investigate resource management by improving QoS 

metrics (increasing the capacity of links and decreasing delay values). Three approaches have 

been proposed and implemented according to the algorithms stated in section 3. They were 

tested on four different topologies which are (2-tier, 3-tier, and fat-tree) DC and dumbbell 

topologies. Ping and Iperf commands have been used to record delay and bandwidth values 

and Wireshark application was used to capture packet delivery ratios and average packets per 

second for the streamed video between hosts. The floodlight controller has more appropriate 

graphics and display capabilities than that in the OVS controller. On the other hand, the 

performance of reducing the delay of the statistical approach for both controllers is 85.88% as 



 46 

Received 6 May 2019; Accepted 5 September 2019 

 

an average, while the performance of reducing the delay in the GA approach for both 

controllers is 91.5%, and lastly, it is 95.5% for PSO approach. Finally, the throughput in both 

controllers has been improved from 951 Kbps- 1.77 Mbps to 11.68 Mbps-13.901 Mbps in the 

statistical approach, and to 114.812Mbps- 121.559Mbps in the GA approach, while it has been 

increased to 209.108Mbps- 217.591Mbps in the PSO approach as an average. The error rates 

in terms of packet delivery ratio of Floodlight and OVS controllers were 6.71% and 3.42%, 

respectively. 
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