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Abstract— Finding an optimal solution to some problem, like minimizing and 

maximizing the objective function, is the goal of Single-Objective Optimization (SOP). 

Real-world problems, on the other hand, are more complicated and involve a wider 

range of objectives, several objectives should be maximized in such problems. No single 

solution could be enhanced in all objectives without deteriorating at least one other 

goal, which is the definition of Pareto-optimality. Understanding the idea of Multi-

Objective Optimization (MOP) is thus necessary to find the optimum solution. Multi-

objective evolutionary algorithm (MOEA) are made to simultaneously assess many 

objectives and find Pareto-optimal solutions, MOEA can resolve multi-objective and 

single-objective optimization problems. 

This paper aims to introduce a survey study for optimization problem solutions by 

comparing techniques, advantages, and disadvantages of SOP and MOP with 

metaheuristics and evolutionary algorithms. From this study, we conduct that the 

efficiency of MOP lies in the present more than one SOP, but it takes a longer time to 

process and train and is not suitable for all applications, While SOP is faster and more 

useful in stock and profit maximization applications. And the posterior techniques are 

considered the dominant approach to solving multi-objective problems by the use of the 

field of metaheuristics. 

Index Terms— Multi-Objective Evolutionary Algorithm, Multi-Objective Optimization, 

Optimization problem, Objective Function, Single-Objective Optimization. 

I. INTRODUCTION 

Nature has been utilizing evolution to solve difficult problems for a long time, Thus, 

drawing inspiration from nature for various difficult problems makes sense. When 

evolutionary notions in nature have been reproduced in the computers to address the subject 

of optimization problems in 1977, Holland made a ground-breaking suggestion in 

optimization [1][2]. There are several challenges with solving optimization problems, the 

properties of optimization problems vary and are not all the same. Uncertainty, dynamicity, 

multiple objectives, constraints, and various objectives are a few of such challenges or 

characteristics [3][4]. The position of optimum global shifts with time in dynamic 

problems. In order to follow changes and avoid losing the global optimum, a heuristic must 

be equipped with appropriate operators [5][6].  

Each one of the components of real problems is subject to a variation of uncertainty. A 

heuristic must be able to locate fault-tolerant, robust solutions for dealing with this. Another 

challenge of an actual problem is constraints, which limit the search space. They categorize 

solutions as either infeasible or feasible. In order to eliminate impractical solutions 

throughout optimization and ultimately discover the best practicable solution, heuristics 

should be equipped with appropriate operators. Through the optimization process, the best 

https://doi.org/10.33103/uot.ijccce.23.4.5
mailto:1sana.ali@mu.edu.iq
mailto:Soukaena.h.hashem@uotechnology.edu.iq
mailto:3Shatha.h.jafer@uotechnology.edu.iq


 47 

Received 05/April/2023; Accepted 27/April/2023 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 23, No. 4, December 2023            

DOI: https://doi.org/10.33103/uot.ijccce.23.4.5 

 
solution or value could be discovered [7][8]. Multi-objectives or one objective may be used 

and a minimum or maximum value in the optimization problems. Engineering, 

mathematics, economics, social sciences, aviation, agriculture, and the automobile industry 

are just a few of the fields where this problem can be encountered daily [9][10][11][12]. 

The SOP, MOP, and MOE will be examined, contrasted, and presented in this study, along 

with other works that have utilized such topics.  

The study is divided into five components. Related work is covered in the section II, 

the theoretical foundation in section III, discussion and analysis are covered in the section 

IV, and the recommendations and conclusion are covered in the  section V. 

II. RELATED WORK 

This section shows previous and related Works on Optimization Problems and Multi-

objective evolutionary algorithm (MOEA) watch capable of resolving both multi-objective 

and single-objective optimization problems. Table I summarize the work of some 

researchers who have employed MOEA using metaheuristics to solve various life problems. 

TABLE I. SUMMARIZE THE RELATED WORKS WHO HAVE EMPLOYED MOEA USING METAHEURISTICS TO SOLVE VARIOUS  PROBLEMS. 

Ref Authors Methods Techniques Comment 

[13] S. Mirjalili. etal. Grasshopper optimization Posteriori- 

metaheuristics 

utilize the model to approximate the 

global optimum in a space with a single 

objective. The algorithm is then modified to 

incorporate an archive and target selection 

approach  to estimate Pareto optimum front for 

MOPs. 

[14] K. B. Bey et al. genetic algorithm some The Min-Min heuristic The optimal scheduling of numerous 

resources and tasks is a challenge when 

developing apps in cloud settings. 

[15] L. T. Rasheed Ant Colony Optimization 

(ACO) and particle swarm 

optimization (PSO) 

Priori- metaheuristics presents the design of an optimal Linear 

Quadratic Regulator (LQR) controller for 

position control of a permanent magnet DC 

(PMDC) motor Ant Colony control and particle 

swarm control algorithms have been utilized to 

set the optimal elements of the weighting 

matrices subjected to a proposed cost function. 

[16] S. Mirjalili & Dong the NSGA and NSGAII, the 

multi-objective versions of 

GA, 

Posteriori- 

metaheuristics 

The elitism, computational cost, and 

requirement to provide the sharing parameter 

were all improved over the previous version of  

nondominated sorting genetic algorithm II  

NSGAII. The NSGAII uses a quick, non-

dominated sorting algorithm, an exclusive 

preservation mechanism, and a brand-new, 

parameter-free operator termed niching. 

[17] R. Enkhbat et at weighted sum method Posteriori- 

metaheuristics 

apply the multi-objective optimization 

approach to Malfatti's problem 

[18] S.S. Jasim et al Levy Flight- Chaotic Chen 

mapping on Wolf Pack 

Algorithm in Neural 

Network 

Priori- metaheuristics proposed a novel algorithm  efficiently 

exploits the search regions to detect driving 

sleepiness and balance the exploration and 

exploitation operators, which are considered 

implied features of any stochastic search 

algorithm. 
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III. THEORETICAL BACKGROUND 

Problems with constraints make up almost all real-world problems. The overall 

structure of optimization problems is presented in the following section. 

A. Objective Function and optimization problem 

The objective function can be described as a mathematical representation of an aspect 

that is being evaluated and should be maximized (or minimized) [23]. Creating an objective 

function is the initial step in creating a process for solving either the inverse or the 

optimization problems. Mathematically, the objective function is expressed as follows: 

𝑆 = 𝑆(P); P = {𝑃1, 𝑃2,..., 𝑃N}     (1) 

Where P1, P 2,..., PN represent variables of issue under consideration that may be 

altered to find the minimal value of function S. Often, a mathematical or physical model 

could be used to express the relation between P and S. Rather than simply having a possible 

solution satisfy constraints or not, we commonly have preference relation compared to the 

possible solutions, and we want the optimal possible solution accordance with the 

preference. In a few cases, on the other hand, this relation is impossible or impractical, and 

variation of S concerning P should be found via experimentations. Most of the time, it is 

preferred to reduce some of the errors [24][7]. 

The optimization problem may be expressed as follows: 

 a group of variables, each one with a related domain; 

 an objective function mapping total assignments to the numbers;  

 finding a total assignment that maximizes or minimizes objective function has 

been known as an optimality criterion. 

Finding a total assignment that satisfies the optimality criterion is the goal. For 

concreteness, we presume that the objective function minimization is the optimality 

criterion [25]. An optimization problem with hard constraints defining the range of potential 

variable assignments is called a constrained optimization problem. The best assignment that 

complies with the hard requirements. On optimization, there is a wealth of literature. For 

[19] R. Stewart, et al. Multi-agent blackboard 

system optimization 

algorithm (MABS) 

Priori- metaheuristics proposed a multi-objective optimization 

algorithm based on a multi-agent blackboard 

system (MABS). The MABS framework allows 

multiple agents to read and write relevant 

optimization problem data to a central 

blackboard agent. Agents can search the design 

space at random, use previously discovered 

solutions to explore local optima, or update and 

trim the Pareto front. 

[20] F. Wei. et al. particle swarm optimization Interactive- 

metaheuristics 

provides a potential application to multi-

objective PAS location problem 

[21] Ye Tian et al. DOP algorithms tri-objective OL-DOP 

framework 

for reflecting the properties of real-world 

OL-DOPs, the study suggest a benchmark 

generator for multi-objective and single-

objective online dynamic optimization 

problems (OL-DOPs). 

[22] P. Aspar. Stewart et 

al. 

SOMOGSA+NM, 

which hybridizes the 

sophisticated multi-objective 

MOGSA solver with 

Nelder–Mead local search 

noiseless BBOB 

benchmark set. 

Demonstrates the value of artificially 

introducing a second objective to convert 

multimodal single-objective problems into their 

multi-objective counterparts. 
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various types of constrained optimization problems, there are numerous methods. For 

instance, linear programming can be defined as a type of optimization in which variables 

are real valued, objective function represents a linear function of variables, and constrained 

constraints represent linear inequalities [1]. 

B. single-objective optimization  

Specific techniques are only relevant to certain kinds of functions, such as uni-modal 

functions, with only one maximum (or minimum) within the parameter range under study. 

The function need not be continuous as a result [22]. An single-objective optimization 

(SOP) problem (SOPP) has an objective function of (f(x⃗ )) that should be maximized or 

minimized and a number of the constraints (g(x⃗ )). Eq. (2) exhibits SOPP formula in a 

generalized form [26].  

{

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥 )

𝑠. 𝑡 𝑔𝑗(𝑥 ) ≥  0 (𝑗 =  1;… . . ; 𝑚)

𝑥  ∈  𝑋 ∁ 𝑅𝑛

      (2) 

 The first two functions in Fig. 1 are unimodal, as can be seen. The third function is 

uni-modal in an interval of 0 < P < 3
ω

2
 and the fourth function is multimodal. To discover 

the place of the minimum or maximum for uni-modal functions, it's incredibly simple to 

exclude parts of the domain that are being studied. Consider the first function in Fig. 1 as an 

illustration. If we're attempting to locate the maximal value of a function and we are aware 

that S (P = 1) is smaller than S (P = 2), one could instantly rule out the part to the left of     

P = 1 because this function increases in its value monotonically. And that isn't true for the 

case of the multimodal functions, which had been shown as the fourth function in Fig. 1. 

 

FIG. 1. EXAMPLES OF THE FUNCTIONS S (I.E. ORDINATE) OF ONE DESIGN VARIABLE P (ABSCISSA). 

Avoiding local optima, maintaining sufficient diversity, and assisting the algorithm in 

identifying suitable building blocks which could be later put together by crossover are all 

significant problems in SOP [24].  

C. Multi-objective Optimization Problems  

Naturally, the majority of optimization problems have many goals to achieve ((which 

are typically at odds with one another), yet for the purpose of simplifying their solution, 

they're handled as if they had just one (the rest of the objectives are usually treated as if 

they were constraints). "multi-objective" or "vector" optimization problems refer to 

problems with many objectives. They were initially researched in the area of economics. 

But engineers and scientists quickly discovered that these problems naturally exist in all 

fields of knowledge [27]. 

Basic definitions 
Definition1 (Global minimum). Considering the function f: Ω ⊆ Rn → R, Ω ≠ ∅, for x⃗  ∈ Ω value 

f * ≜ f (x⃗ ∗) > −∞ would be referred to as global minimum only in the case where: 

https://doi.org/10.33103/uot.ijccce.23.4.5
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∀𝑥 ∈ Ω: f (𝑥 ∗) ≤  𝑓 (𝑥 ).      (3) 

Then, x⃗ ∗ Represents solution(s) of global minimum, f represents an objective function and set Ω 

represents a feasible region (Ω ∈  S), where S denotes the entire search space. 

Definition2 (General MOP (i.e., MOP problem). Find vector x⃗ ∗ =[x∗
1, x∗

2,..., x∗
n ]T satisfying m 

constraints of inequality: 

gi (𝑥 ) ≥ 0 i = 1, 2,...,m                              (4) 

ρ constraints of equality 

ℎi (𝑥 ) = 0 𝑖 = 1, 2,..., 𝑝                     (5) 

and will lead to optimization of a vector function 

𝑓 (𝑥 ) = 𝑓1(𝑥 ), 𝑓2(𝑥 ),..., 𝑓k (𝑥 )]T                   (6) 

where x⃗  = [x1, x2,..., xn]T represents a decision variable vector[27]. 

The idea of "optimal" changes in the case where there are multiple objective functions 

because, unlike in global optimization, the goal of MOPs is identifying good compromises 

(or "trade-offs") instead of the solution. The definition of "optimum" that is most frequently 

used was first put forth by Vilfredo Pareto and later generalized by Francis Y sidro 

Edgeworth[28]. Even though a few publications refer to this idea as Edge worth-Pareto 

optimal, using the term Pareto optimum is typically recommended. The formal definition 

follows. 

Definition 3 (Pareto optimality). A point x⃗ ∗ ∈ Ω would be referred to as Pareto optimal if for 

each x⃗  ∈ Ω and I = {1, 2,..., k} either,  

∀i∈I (fi (𝑥 ) = fi (𝑥 ∗))                          (7) 

or there is a minimum of one i ∈  I such that 

𝑓𝑖 (𝑥 )  >  𝑓𝑖 (𝑥 ∗)                               (8) 

In other words, that definition states that x is Pareto optimal when an infeasible vector 

x exists that might reduce certain criteria without simultaneously increasing at least a single 

other criterion. Unless otherwise stated, "Pareto optimal" is taken to mean about complete 

choice variable space. 

Other significant definitions that are related to the Pareto optimality include: 

Definition4 (Pareto dominance). A vector u⃗  = (u1,..., uk) would be considered to dominate v⃗  = 

(v1,..., vk) (denoted by u⃗  ⪯ v⃗ ) only in the case where u is partially less than v; i.e.,  

∀i ∈ {1,..., k}, ui ≤ vi ∧  ∃i ∈ {1,..., k}: ui < vi. 

Definition5 (Pareto optimal set). For some certain MOP f  (x), a Pareto optimal set (𝒫∗) would be 

expressed as: 

𝒫∗:= {𝑥 ∈ 𝛺 ￢∃ 𝑥′ ∈ 𝛺 𝑓  (𝑥′) ⪯ 𝑓  (𝑥)}.      (9) 

Definition6 (Pareto front)[29]. For some certain MOP f  (x) and Pareto optimal set 𝒫∗, 

a Pareto front (𝒫F∗) would be represented as:  

𝒫𝐹∗:= {�⃗�  = 𝑓  = (𝑓1(𝑥),..., 𝑓k (𝑥)) | 𝑥 ∈ 𝒫∗}.     (10) 

Pareto front of  set 𝒫∗ is is given as in Equation (10) and can be seen in Fig. 2.  
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FIG. 2. DOMINATED, NON-DOMINATED AND PARETO-FRONT SOLUTION SET. 

Finding an analytical expression of a surface or line which includes such points is 

typically difficult and, in many instances, impossible. To create the Pareto front, one would 

typically compute points (Ω) and their corresponding f (Ω). It is after that easy to identify 

non-dominated points and create a Pareto front once there are enough of these. [9][30] 

Since it can't be dominated by a solution x, this solution is known as Pareto optimal 

solution. A group of best non-dominated solutions exists for any problem. This set is taken 

into account as a MOP solution. As a result, a set that has been referred to as Pareto optimal 

front stores Pareto optimal solutions’ projection in the objective space [13][31]. 

D. Multi-Objective Optimization Techniques 
Many different approaches to solving MOP problems have been developed throughout 

the years thanks to the efforts of a sizable number of operational researchers. They apply 

stochastic programming or metaheuristics when they have really complex (particularly non-

convex) problems. Multiple configurations could be examined with various search variable 

values when employing a metaheuristic optimization algorithm, which is another benefit. 

This is especially helpful for assessing how well various objectives perform in a multi-

scenario study. A posteriori [25], a priori, and interactive [32] are the three primary 

methods for solving multi-objective problems utilizing metaheuristics [33]. The 

first solution that comes to mind is a brute-force search. It is neither a practical nor 

appropriate solution because it necessitates many function evaluations and intensive 

computer resources. A few problems could be transformed into SO problems because the 

amount of priority of objectives has been determined by a designer's desire or their 

conditions. A priori preference specification refers to such approaches, which include 

weighted min-max [33], weighted sum [3], goal programming [34], and lexicographic 

approaches [35]. 

More than one objective would be combined into a single objective in the first 

approach. As a result, MOP has been reduced to the following single-objective problem 

[13]:  

Minimizing: F (𝑥 ) = w1 f1 (𝑥 ) + w2f2 (𝑥 ) +... + w0 f0(𝑥 )   (11) 

                     Subject to: gi (𝑥 ) ≥ 0, i= 1, 2,..., m                          (12) 

                     hi (𝑥 ) = 0, i= 1, 2, 3, 4,..., p                          (13) 

                     Li ≤ xi ≤ Ui, i= 1, 2, 3, 4,..., n                          (14) 

Here, w1, w2,w3,,..., w0 represent weight values of the objectives, n represents number 

of the variables, o represents number of the objective functions, m denotes number of the 

constraints of inequality, p denotes the number of constraints of equality, hi represents ith 

https://doi.org/10.33103/uot.ijccce.23.4.5
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constraints of equality, gi represents ith constraint of inequality, and [Li,Ui] represent 

boundaries of ith variable.  

Since decisions are made before optimization when setting the weights, these  are 

known as a priori approaches. A priori techniques have more drawbacks than gains. To 

identify the Pareto optimal front when utilizing such approaches, the designer's primary 

responsibility is running the algorithm several times simultaneously while varying the 

weight values. The a priori procedures have drawbacks. First off, not all MO problems 

contain preference information. Second, because the SOP solution focuses on a single 

problem, the designer does not understand how objectives can be traded off. Multi-

objective metaheuristics' second method is a posteriori. The decision-making process takes 

place after optimization, as the name suggests. There is no longer any aggregation, and 

these techniques continue to formulate the problem as having multiple objectives. The 

major benefits of this class are the capability to identify a Pareto optimal solution that has 

been set in a single run, information sharing across Pareto optimal solutions throughout 

optimizations, and determining Pareto optimal front of any type. To handle multiple, 

frequently conflicting objectives, posteriori techniques, on the other hand, call for unique 

processes. 

Additionally, these approaches typically have higher computing costs compared 

to aggregation procedures. Interactive MOP is the name of the last method discussed above. 

Decisions are made throughout optimization, as implied by the term. An expert preference 

is fetched continuously and included throughout optimization so as to obtain required 

Pareto optimal solutions. This technique is known as interactive optimization or "human-in-

the-loop" optimization [36]. The body of research demonstrates that posteriori 

approaches dominate MOP. Most of the well-regarded SOP algorithms were altered to do a 

posteriori MOP. They all use an archive to keep the optimal Pareto optimum solutions 

found thus far, and they all compare solutions depending on Pareto dominance. The 

fundamental structure of every a posteriori approach is the same. With a group of random 

solutions, they start the optimization process. They attempt to enhance solutions in order to 

find better Pareto optimal solutions after discovering them and saving them into an archive. 

When a criterion has been satisfied, the process of enhancing Pareto optimal solutions has 

been terminated. Finding a highly accurate approximation of actual (i.e. true) Pareto 

optimum solutions for some certain multi-objective problem is the fundamental goal of an a 

posteriori multi-objective algorithm. The solutions must be distributed among all of the 

objectives as evenly as possible because decision-making often follows optimization 

results. Finding accurate Pareto optimal solutions (i.e., convergence) is difficult because it 

conflicts with distribution of solutions (i.e., the coverage). To solve a multi-objective 

problem, the MOP must successfully balance those two aspects [37][13].  

E. Multi-Objective Evolutionary Algorithm 

An MOEA has been initially used in the middle of the 1980s. Since then, a significant 

amount of study has been conducted in this field, which is currently known as evolutionary 

multi-objective optimization (EMO) [30]. A stochastic optimization method is the MOEA. 

MOEAs are utilized to determine the best Pareto solutions for particular problems, much 

like other optimization algorithms, yet they differ from population-based methods. Almost 

all current MOEAs base their behavior on dominance [38]. Except for the utilization of 

dominance relationships, the MOEA's optimization method is extremely comparable to 

evolutionary algorithms. For selecting a potentially superior solution for the generation of a 

hereditary population, the objective value is determined for each individual at each iteration 

https://doi.org/10.33103/uot.ijccce.23.4.5
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and utilized to define the relation of dominance in the population. This population could be 

combined with its parent populations to create populations for the following generation. 

Also, the presence of objective space can allow MOEA the flexibility to use some 

traditional support approaches, such as niching [37]. Evolutionary algorithms mostly 

determine the Pareto front and collection of the multi-objective problems. Obtaining Pareto 

set and Pareto front, which are near true Pareto set and true Pareto front (i.e., 

convergence), is one of the two primary objectives of the MOP algorithms [39]. Multi-

objective functions come with a predefined true Pareto set and front. The other motive is 

to achieve the maximal well-distributed Pareto set and front (i.e., the coverage). This 

suggests that solutions must be evenly dispersed in the Pareto set and front rather than being 

concentrated close to one another. Multimodal and MOP problems are the names given to 

this group of problems [40]. A multimodal MOP problem with 2 Pareto sets for one Pareto 

front is shown in Fig. 3. The same color and shape are used to symbolize solutions and the 

accompanying objective value. The far-off solutions in the choice space might be 

crowded in objective space. 

 

 

 

 

 

FIG. 3. ILLUSTRATES A MULTIMODAL MOO PROBLEM. 

A few of the most well-known posteriori approaches have been based upon 

Evolutionary Algorithms (EA) [41], which includes NSGA-II [42] and Non-dominated 

Sorting Genetic Algorithm (NSGA)[43], [44], [45], MO Particle Swarm Optimization 

(MOPSO) [28], [46], and Pareto-frontier Differential Evolution (PDE) [47]. While the 

recently developed nature-inspired EAs have been utilized in real-life MOPs as well, the 

algorithms that have been mentioned above were first introduced more than ten years ago. 

Excellent examples of EA use in MO optimizations include the Ant Lion Optimizer 

(ALO) [41], Ant Colony Optimization [15] flower pollination algorithm [48], Water Cycle 

Algorithm (WCA) [32], Grey Wolf Optimizer (GWO) [49], Cuckoo Search Algorithm [50] 

and ABC Algorithm [51]. Fig. 4: Metaheuristic-based classification of optimization 

algorithms. 

 

 

 

 

 

 

FIG. 4. CLASSIFICATION OF OPTIMIZATION BASED ON METAHEURISTICS. 
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IV. ANALYSIS AND DISCUSSION 

Through our study of the three topics, SOP, MOP, and MOE algorithms, we can 

compare these techniques to clarify the possibility of each technique, as shown in Table II. 

In summary, SOP involves optimizing a single objective function, while MOP involves 

optimizing multiple objective functions simultaneously. MOEAs are an optimization 

algorithm that can be utilized for finding Pareto optimal solutions for MOP problems. In 

Table III, we compare techniques used to solve MOP using metaheuristics.  

TABLE II. COMPARISON AMONG SOP, MOP, MOEA 
 

TABLE III. TECHNIQUES FOR SOLVING MULTI-OBJECTIVE PROBLEMS USING METAHEURISTICS 

Techniques advantage disadvantage Comment 

priori aggregation of objectives allows 

single-objective optimizers to 

effectively find Pareto optimal 

solutions. 

Need to run the algorithm 

multiple times while 

changing weight values to 

find Pareto optimal front. 

Decision-making is done 

before the optimization 

within determining weights. 

The disadvantages of a 

priori approaches outweigh 

their benefits 

Posteriori the capacity to identify Pareto 

optimal front of any type, exchange 

information amongst Pareto ideal 

solutions throughout optimization, 

and obtain the optimum solution set 

in one run. 

Require certain mechanisms 

for addressing multiple and 

usually conflicting goals. 

Additionally, those methods' 

computational costs are 

typically higher than those of 

the aggregation methods. 

the dominant approaches of 

MOP 

interactive by directly incorporating the human 

decision-maker in the search 

process, the user can learn from 

solutions as they're developed, 

refining their preferences and 

restricting the search to the most 

relevant solution space areas. 

It is complicated, and it costs 

more 

 

This is a common response 

to the limitations of a priori 

and a posteriori approaches. 

V. CONCLUSIONS AND RECOMMENDATIONS 

A few of the most fascinating and difficult problems in the area of computer sciences 

and mathematics are optimization problems. Following the thorough research, we may draw 

the next conclusions: 

Optimization 

problems 

Definition Goal Example 

Single objective 

(SOP) 

Involve optimizing a single 

objective function 

find the solution that optimizes 

this objective function. 

finding the shortest route between 

two points 

Multi-objective 

(MOP) 

Involve optimizing multiple 

objective functions 

simultaneously 

find a set of solutions that 

represent the trade-offs between 

the different objective functions. 

designing an airplane that is both 

fuel efficient and has a low noise 

level. 

Multi-objective 

evolutionary 

algorithms 

(MOEA) 

A type of optimization 

algorithm that can be used to 

find Pareto optimal solutions 

for multi-objective optimization 

problems 

Use principles of natural selection 

and genetics to search for 

solutions. Often used in complex 

optimization problems where 

traditional optimization methods 

may not be effective. 

multiobjective optimization model 

is applied using the metaheuristics 

cuckoo search optimization 

algorithm (MCSO) to enhance the 

performance of a cloud system 

with limited computing resources 

while minimizing the time and 

cost. 
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 The application seeking optimality is associated with the distinction between MOP 

and SOP. According to the study, direct applications with a single goal prefer to 

utilize SOP to save time and consume less CPU power, whereas MOP is more 

sophisticated and utilizes MOP algorithms which could simultaneously maximize 

multiple objectives that are at odds with one another. To determine the best 

compromise solution amongst multiple objectives, such algorithms might produce 

a set of the trade-off solutions which had been referred to as Pareto front. 

 Various optimization algorithms are available, such as derivative-free algorithms 

(such as PSO and evolutionary algorithms) and gradient-based algorithms 

(like gradient descent and stochastic gradient ratio), given that this work studied 

evolutionary algorithms. 

 Finding Pareto-optimal solutions for MOP and SOP could be done using MOEAs, an 

optimization algorithm. 

We could offer guidance to optimization researchers after researching and examining 

optimization problems. An initial step is to specify the objectives that one hopes to 

accomplish. Any aim could be crucial, in which case we advise utilizing MOP. Since the 

goals could differ, it is important to concentrate on the higher goal. In this situation, it is 

advised to employ SOP rather than Pareto solutions due to their energy, time, and storage 

requirements for system training. The application determines which algorithm should be 

used. For instance, a financial analytics program could optimize a mutual fund's portfolio. 

The analyst's goal may be to increase return on investment while lowering portfolio risk and 

guaranteeing that the portfolio is well-diversified. In this case, when deciding which assets 

to include in the portfolio in this scenario, the analyst might have to consider several 

conflicting objectives. Non-dominated sorting genetic algorithms (NSGA), Multi-objective 

evolutionary algorithms (MOEAs), Weighted product method, Weighted sum 

method, multi-objective linear programming, and Pareto optimization are some algorithms 

frequently utilized for solving multi-objective problems in financial analytics. Consider a 

financial analyst attempting to maximize the return on a portfolio of investments as an 

example of a single objective function. The analyst might search for the portfolio 

that maximizes the objective function, which might be the return on the portfolio. Financial 

analytics SOPP could be solved using a variety of algorithms, such as Simulated annealing, 

PSO, Genetic Algorithms, Tabu search, and Gradient Descent. 
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