
 99

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

A Comparative Study of Graph Search

Algorithms for Planar Manipulator to Avoid

Obstacle Collision

Mustafa Laith Muhammed1, Amjad Jaleel Humaidi2, Enass Hassan Flaieh 3
1,3Mechanical Engineering Department, University of Technology, Baghdad, Iraq

2Control and Systems Engineering Department, University of Technology, Baghdad, Iraq
1me.19.08@grad.uotechnology.edu.iq, 2Amjad.j.humaidi@uotechnology.edu.iq,

3Enass.h.flaieh@uotechnology.edu.iq

Abstractð The search algorithms are characterized by their ability to find the

optimal path in a short calculation time. In this study, a comparative analysis

has been conducted to perform path planning of planar manipulator for static

obstacle avoidance based on graph search algorithms. Four methods have been

taken into account to establish a comparison platform; namely, conventional

A*, modified A*, Chaos A*, and circulation heuristic search (CHS) algorithms.

The performance of comparison is evaluated in terms of length of optimal path

and consumption time of calculation. All algorithms have been coded and

simulated within the MATLAB software environment. According to computer

simulation, the results showed that CHS algorithms outperform the other graph

search ones in terms of generated path length, while the Choas A* could give

the least calculation time as compared to its counterparts.

Index Termsð Path planning, A-Star, Modified A-Star, Chaos A-Star, CHS, Planar

manipulator.

I. INTRODUCTION

The aim of robot path planning is to determine how a robot will move and maneuver within a

specific team in order to maintain its objectives. The path planning task requires the robot to generate a

collision-free path between a start and a destination point in addition to avoiding obstacles. Furthermore,

the robot must meet certain requirements or improve specific performance aspects. The type of path

planning is influenced by the amount of information available about the environment (totally unknown,

partially known, and completely known). Most of the time, the environment is only partially known,

with the robot identifying certain regions inside the workplace before moving on to path planning. The

obstacle is said to be static (dynamic) when its position and orientation stay stationary (change) relative

to fixed reference frame over the time [1].

When information from sensors installed is continually gathered while the manipulator is moving,

local path planning occurs. In this technique of path planning, the robot manipulator reacts instantly to

changes in the environment and changes its orientation accordingly. When the robot's surroundings are

well-known and static, the planning is known as global path planning. In this mode, the planning

algorithm will generate the full path before the movement begins [2][3].

In this study, the main contribution can be listed below:

1. A several modifications in classical A* path planning method has been proposed by extending

search area of adjacent nodes around current node or changing search techniques.

2. A comparison study has been conducted between the proposed modified methods with the

conventional one.

https://doi.org/10.33103/uot.ijccce.22.4.8

 100

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

II. RELATED WORKS

A review of the most recent studies in the field of current work in order to determine the analysis

strategies, Raheem A. and Abdul-Kareem A. introduced a new approach of manipulator path planning

based on probabilistic roadmap and the artificial potential field methods and then used A* method to

enhanced roadmap [4]. The study has applied Non-uniform B-spline (NURBS) curve for enhancing the

generated path. Huang X. et al., used modified A-star algorithm to develop novel collision-free path

planning for articulated space manipulator. The neural network algorithm has been used to ensure

optimal time cost of path planning [5]. T. Nayl et al., presented a new approach to find smooth path

planning with obstacles avoidance in fully known environment based on modified A-Star algorithm for

articulated manipulator with obstacle avoidance based on data acquisition of local range sensors, which

are mounted on the manipulator arms [6]. F. Li et al., presented an improved A-star algorithm based on

collision-detection algorithm for optimal and collision-free path planning. This study has been applied

to take a needle, fixed at the gripper of 6 DOF articulated robot, to inject a target point accurately and

smoothly [7]. AL-Qassar A. and Abdulnabi A. utilized Bezier curve and A-star algorithm to achieve

collision-free path planning for 5 DOF robot manipulator [8]. J. Silva et al, used graph search algorithm

A* to implement path planning for pick-and-place operations in configuration free space with the

presence of obstacles. The proposed method could successfully perform shortest path and avoid both

joint limitations and obstacles for articulated manipulator [9]. P. Tavares et al, proposed new path

planning approach for multiple robotic manipulators operating in the configuration space based on

double A* algorithm by using multiple universal robot arm 5 (UR5) [10]. S. Gunawan etal, proposed

modified A* algorithm to perform path planning for nonholonomic mobile robots. The proposed

method showed smooth and continuous path planning in virtual environment [11]. F. Duchon et al,

introduced modifications in the A-star algorithm for mobile robot path planning. The estimation time

and the path optimality are the main modified index in this study, which has been applied in different

scenarios with high complexity in working environment [12]. X. Li et al proposed a path planning

approach in unknown environment by fusing the improved A-star algorithm with improved Dynamic

Window Approach (DWA) algorithm. The hybrid methodology could address the drawbacks in the

classical A-star algorithm like the capability to avoid obstacles and the use of numerous turning points

[13]. X. Lan et al., have developed an improved path planning algorithm method by combing ant colony

algorithm (ACA) with A-star algorithm to find local optimal path in mobile robot applications with

static obstacles and complex environments [14]. T. Zheng et al., have improved the A-star algorithm in

complex environment by firstly utilizing the cost function of angle evaluation to reduces the number of

inflection points in the search path and secondly by using the jump search strategy to reduce the number

of search nodes [15].

III. ROBOT MANIPULATOR MODELLING

The Kinematic analysis describes the analytical link between joint positions, position and

orientation of end-effector in a Cartesian coordinates by neglecting the moments and forces producing

the structural motion [16]. The Kinematic analysis can be classified into forward kinematics (F.K.) and

inverse kinematics (I.K.).

The F.K. of robot manipulator is concerned with calculation of the position and orientation of end-

effector frame relative to joint coordinates ɗ, while the I.K. focuses on finding specifies joint angles

based on specified cartesian points of end-effector to obtain desired orientation and position of end-

effector. Fig. 1 shows the forward and inverse kinematics for planar manipulator [17][18].

https://doi.org/10.33103/uot.ijccce.22.4.8

 101

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

(A) (B)

FIG. 1. 2R PLANAR MANIPULATOR (A) ELBOW DOWN CONFIGURATION (B)ELBOW UP CONFIGURATION.

Based on elbow up configuration, one can deduce the cartesian positions as follows:

ὖ ὒȢÃÏÓ— ὒȢÃÏÓ — — (1)

ὖ ὒȢÓÉÎ — ὒȢÓÉÎ — — (2)

where ὒ and ὒ are the link lengths of manipulator. For elbow up configuration and based on geometric

analysis, the I.K. can be obtained according to the following equations:

Ὑ ὖ ὖ (3)

Using the cosines law to have

Ὑ ὰ ὰ ςὰὰὧέί‌ (4)

It easy to get ‌,

‌ ὧέί (5)

According to Fig. 1B, one can have

— ‌ “ (6)

— ὧέί ʌ (7)

‪ ὸὥὲ (8)

— ὸὥὲ ὸὥὲ (9)

IV. CLASSIC A* ALGORITHM

The A-Star algorithm is heuristic method which is devoted to search feasible and

optimal path in certain environment. The algorithm divides the space into several cells. The

evaluation of path length is based on cost function which can be defined by:

Ὢὲ Ὣὲ Ὤὲ (10)

where g (n) denotes the actual distance from the current cell (node) to the start point, h (n) define the

heuristic distance from the current cell to the destination point, and f (n) represents the total path distance

from the start point to destination point via selected sequence of cells [17].

The classic A* searches for a cell in the space grid for the optimal way to go from a start point to a

destination point. In Fig. 2, the A-star algorithm is applied to eight neighborhoods nodes around a

current node.

https://doi.org/10.33103/uot.ijccce.22.4.8

 102

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

FIG. 2. A* ALGORITHM SEARCHING DIAGRAM .

In order to move the robot arm from the start point to the goal point in the presence of obstacles, a

sequence of joint angles along the path have to be determined [19]. The problem of finding a feasible

collision free path, from start to goal, can be solved by applying A* algorithm, a number nodes within

the acceptable area of the workspace will be found by Eq. 10, and used to generate the path. The A*

path planning algorithm to move the arm through the chosen nodes to reach the desired goal point is

illustrated via the Pseudo Code listed in Fig. 3.

Classic_A_star_WSA ()

Begin

 //Workspace Analysis Generation:

 Set Workspace Parameter;

 Set Manipulator Parameter;

 Initiate Workspace;

 Do

 For i=1 to All Point in Workspace, do

 Calculate:Inverse_Kinematic_Elbow_Up

 End For (i)

 Read Number, Shape, Size, Position of Obstacles;

 Identify Acceptable Points;

 Identify Forbidden Points;

 While (All Points in Workspace are Analyzed)

 IF Manipulator Collide the Obstacles, then

 Repeat Process

 ELSE

 Write: Free Workspace Analysis

 End IF

 //Path Planning Generation:

 Set Search Space Parameter;

 Set Open_List = (), Close_List = ();

 Insert (Start_Node, Open_List);

 Do

 Current_Node = Start_Node;

 Determine Eight Neighbor_Node;

 Insert (Neighbor_Nodes, Open_List);

 For n=1 to Neighbor_Nodes, do

 F(n) = G(n) + H(n)

 End For (n)

 Remove (min_cost_Node, Open_List);

 Insert (min_cost_Node, Close_List);

 IF the Node is the Target_Node, then

 Write: The Path from Targrt_Node

 to Start_Node

 ELSE

 Find Node Successor that NOT in

 Close_List, put in Open_List and

 calculate the cost functions.

 End IF

 While (All Nodes are Analyzed)

End

FIG. 3 THE PSEUDO CODE TO EXECUTE PATH PLANNED OF 2 DOF MANIPULATOR BASED ON A* ALGORITHM.

V. MODIFIED A* ALGORITHM

In the search based on standard A* algorithm, the work space grid is limited to 8 adjacent nodes

surrounding the current node as illustrated in Fig. 2. Since the generated path is based on linking the

closet possible nodes, this will lead to zigzag style path and hence this is not quite desirable due to sharp

edges in finding optimal path.

https://doi.org/10.33103/uot.ijccce.22.4.8

 103

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

 (A) (B)

FIG. 4. MODIFIED A* ALGORITHM SEARCHING DIAGRAM (A) 24 NEIGHBORHOOD NODES. (B) 48 NEIGHBORHOOD NODES.

The modification of classic A* algorithm is to extend searching neighborhoods of the current node.

Instead of using searching nodes of 8-nodes, an extension of 24-nodes around the current node has been

proposed. Of course, this will reduce the sharp edges as indicated in Fig. 4. However, the evaluation

function is calculated in the same principle as in Eq. 10. For path generation, the usage of the node from

outer or inner sets is performed based on the presence of the obstacles or the rational calculation of each

node, see Fig. 4A. The Pseudo code which represents the steps of modified A* algorithm taking into

account the planar manipulator and obstacle avoidance is developed in Fig. 5:

Modified_A_star_WSA ()

Begin

//Workspace Analysis Generation:

 Set Workspace Parameter;

 Set Manipulator Parameter;

 Initiate Workspace;

 Do

 For i=1 to All Point in Workspace, do

 Calculate: Inverse_Kinematic_Elbow_Up

 End For (i)

 Read Number, Shape, Size, Position of Obstacles;

 Identify Acceptable Points;

 Identify Forbidden Points;

 While (All Points in Workspace are Analyzed)

 IF Manipulator Collide the Obstacles, then

 Repeat Process

 ELSE

 Write: Free Workspace Analysis

 End IF

//Path Planning Generation:

 Set Search Space Parameter;

 Set Search Space Parameter;

 Set Open_List = (), Close_List = ();

 Insert (Start_Node, Open_List);

 Do

 Current_Node = Start_Node;

 Read Neighbor_Nodes_Matrix_Size;

 Determine nth Neighbor_Nodes;

 Insert (Neighbor_Nodes, Open_List);

 For n=1 to Neighbor_Nodes, do

 F(n) = G(n) + H(n)

 End For (n)

 Remove (min_cost_Node, Open_List);

 Insert (min_cost_Node, Close_List);

 IF the Node is the Target_Node, then

 Write: The Path from Targrt_Node to

 Start_Node

 ELSE

 Find Node Successor that NOT in

 Close_List, put in Open_List and

 calculate the cost functions.

 End IF

 While (All Nodes are Analyzed)

End

FIG. 5. THE PSEUDO CODE TO EXECUTE PATH PLANNED OF 2 DOF MANIPULATOR BASED ON MODIFIED A* ALGORITHM.

VI. CHAOS A* ALGORITHM

The necessity behind developing such a modification is either to increase the smoothness of the

generated path or to reduce the time needed to reach the destination node, or both, as explained in the

previous modification. Because of the search is based on the standard A* algorithm, the work space

grid is limited to 8 adjacent nodes surrounding the current node, as shown in Fig. 2, according to that it

https://doi.org/10.33103/uot.ijccce.22.4.8

 104

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

take much longer time to reach destination node, so it necessary to develop an algorithm reach

destination node with significant less estimation time.

 (A) (B)

 (C) (D)

FIG. 6. CA* ALGORITHM SEARCHING DIAGRAM (A) 5 RANDOM NEIGHBORHOOD NODES. (B) 12 RANDOM NEIGHBORHOOD

NODES. (C) 23 RANDOM NEIGHBORHOOD NODES. (D) 34 RANDOM NEIGHBORHOOD NODES.

The Chaos A-star (CA*) algorithm is also a modification of the classic A* algorithm which extend

searching neighborhoods of the current node. The expansion strategy takes the structure of an octagon

with a specific radius to distribute neighboring nodes, but in a random distribution manner; for example,

if the number of adjacent nodes is 48, only 23 of them are randomly distributed as shown in Fig. 6C.

The objective of this modification is to minimize the time necessary to search for the destination node

or the transition time from the start node to the end node in the presence of obstacles by more than 50%

when compared to previous modified algorithms with the same number of search nodes. However, the

evaluation function is calculated in the same principle as in Eq. 10. For path generation, the selection

of the node in the searching process is performed based on the presence of the obstacles or the rational

calculation of each node, see Fig. 6B, C, D. The Pseudo code which represents the steps of Chaos A*

algorithm is developed in Fig. 7.

https://doi.org/10.33103/uot.ijccce.22.4.8

 105

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

Chaos_A_star_WSA ()

Begin

//Workspace Analysis Generation:

 Set Workspace Parameter;

 Set Manipulator Parameter;

 Initiate Workspace;

 Do

 For i=1 to All Point in Workspace, do

 Calculate: Inverse_Kinematic_Elbow_Up

 End For (i)

 Read Number, Shape, Size, Position of Obstacles;

 Identify Acceptable Points;

 Identify Forbidden Points;

 While (All Points in Workspace are Analyzed)

 IF Manipulator Collide the Obstacles, then

 Repeat Process

 ELSE

 Write: Free Workspace Analysis

 End IF

//Path Planning Generation:

 Set Search Space Parameter;

 Set Search Space Parameter;

 Set Open_List = (), Close_List = ();

 Insert (Start_Node, Open_List);

 Do

 Current_Node = Start_Node;

 Read Search Radius of Octagon from

 Current_Node;

 Determine nth Neighbor_Nodes Randomly;

 Insert (Neighbor_Nodes, Open_List);

 For n=1 to Neighbor_Nodes, do

 F(n) = G(n) + H(n)

 End For (n)

 Remove (min_cost_Node, Open_List);

 Insert (min_cost_Node, Close_List);

 IF the Node is the Target_Node, then

 Write: The Path from Targrt_Node to

 Start_Node

 ELSE

 Find Node Successor that NOT in

 Close_List, put in Open_List and

 calculate the cost functions.

 End IF

 While (All Nodes are Analyzed)

End

FIG. 7. CHAOS A* ALGORITHM PSEUDO CODE.

VII. CIRCULATION HEURISTIC SEARCH

The Circulation Heuristic Search (CHS) is a modification of standard A* algorithm which extend

searching neighborhoods of the current node. Instead of using searching nodes of 8-nodes, the

expansion strategy uses deploying all nodes inside a circle whose center is the current node, and its

diameter is determined in advance based on the unit of measurement used in the work space. Of course,

this will reduce the sharp edges as indicated in Fig. 8.

(A) (B)

https://doi.org/10.33103/uot.ijccce.22.4.8

 106

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

(C) (D)

FIG. 8. CHS ALGORITHM SEARCHING DIAGRAM (A) 2-UNIT RADIUS (B) 3-UNIT RADIUS (C) 4-UNIT RADIUS (D) 5-UNIT RADIUS.

However, the evaluation function is calculated in the same principle as in Eq. 10. For path

generation, the selection of the node inside the searching circle is performed based on the presence of

the obstacles or the rational calculation of each node, see Fig. 8B, C, D. The Pseudo code which

represents the steps of CHS algorithm taking into account the planar manipulator and obstacle

avoidance is developed in Fig. 9.

Circulation_Heuristic_Search_WSA ()

Begin

//Workspace Analysis Generation:

 Set Workspace Parameter;

 Set Manipulator Parameter;

 Initiate Workspace;

 Do

 For i=1 to All Point in Workspace, do

 Calculate: Inverse_Kinematic_Elbow_Up

 End For (i)

 Read Number, Shape, Size, Position of Obstacles;

 Identify Acceptable Points;

 Identify Forbidden Points;

 While (All Points in Workspace are Analyzed)

 IF Manipulator Collide the Obstacles, then

 Repeat Process

 ELSE

 Write: Free Workspace Analysis

 End IF

//Path Planning Generation:

 Set Search Space Parameter;

 Set Search Space Parameter;

 Set Open_List = (), Close_List = ();

 Insert (Start_Node, Open_List);

 Do

 Current_Node = Start_Node;

 Read Search Circle Size from Current_Node;
 Find all the Nodes inside the search Circle and

 Consider them as Neighbor_Nodes of

 Current_Node;

 Insert (Neighbor_Nodes, Open_List);

 For n=1 to Neighbor_Nodes, do

 F(n) = G(n) + H(n)

 End For (n)

 Remove (min_cost_Node, Open_List);

 Insert (min_cost_Node, Close_List);

 IF the Node is the Target_Node, then

 Write: The Path from Targrt_Node to

 Start_Node

 ELSE

 Find Node Successor that NOT in

 Close_List, put in Open_List and

 calculate the cost functions.

 End IF

 While (All Nodes are Analyzed)

End

FIG. 9. THE PSEUDO CODE TO EXECUTE PATH PLANNED OF 2 DOF MANIPULATOR BASED ON CHS ALGORITHM.

VIII. SIMULATION RESUTLS

In this study, the up-elbow configuration is addressed and the generated path planning algorithms

consists of three parts. The first part is the workspace in Cartesian space. The workspace is defined as

a space made of all points that can only be reached by a specified end-effector configuration. Inverse

kinematics has been used to obtain these points which are related with joint angles. As illustrated in

https://doi.org/10.33103/uot.ijccce.22.4.8

 107

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

Fig. 10, the generation of free cartesian space is limited by mechanical and geometric constraints, which

affect and limit the motion of the robotic manipulator as well as split the workspace into acceptable and

forbidden zones. The generation of free cartesian space can be achieved by analyzing all possible

solutions for acceptable points in the environment, which are dependent on the obstacles collision

checking function as shown in Fig. 10B [20].

 (A) (B)

FIG. 10. (A) MANIPULATOR LAYOUT (B) WORK SPACE ANALYSIS WITH DIFFERENT OBSTACLE SHAPE BASED ON ELBOW UP

MANIPULATOR.

The workspace has a dimension of (50 to 50) cm in the x-axis and (0 to 50) cm in the y-axis. The

length of the manipulator links is 30 cm for link 1 and 20 cm for link 2. The obstacle type is static and

its arrangement in the workspace has two cases for each proposed method. The cases are composed of

four obstacles, each one of various shapes with a diameter of 10 cm and coordinates as shown in Table

I.

TABLE I. OBSTACLES COORDINATES FOR THE PROPOSED PATH PLANNING ALGORITHMS

Configuration
1st-Obstacle 2nd-Obstacle 3rd-Obstacle 4th-Obstacle

X (cm) Y (cm) X (cm) Y (cm) X (cm) Y (cm) X (cm) Y (cm)

Case 1 35 18 7 35 -13 35 -30 20

Case 2 41 10 7 40 -16 33 - -

The second part of the proposed path planning algorithms is the workspace analysis for obstacle

avoidance. This part is the same as the obstacle-free space excluding all the points which make contact

with obstacle area. In other words, this part includes all points of workspace where there is no collision

of manipulatorôs links with resident obstacles during the path planning from start to destination points.

Accordingly, one can detect three forbidden regions; one is due to allowable lengths of arms (outer

region), the second area is due to presence of obstacle, while the third area (inner region) is due to

singularity and mismatch in length of the first and second arms. The latter area has a radius equal to the

length of second link as shown in Fig. 10B.

The third part of path planning is the path planning algorithm. This process is restricted only to an

acceptable area. The algorithms have to find the shortest path from start to destination point within the

acceptable area in a shortest time. Fig. 11, shows the implementation of two cases of obstacle

configurations based on A* algorithm.

https://doi.org/10.33103/uot.ijccce.22.4.8

 108

Received 14/February/2022; Accepted 30/March/2022

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 4, December 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.4.8

(A) (B)

FIG. 11. A* PATH PLANNING WITH TWO OBSTACLE CONFIGURATIONS: (A) CASE 1, (B) CASE 2.

As shown in Fig. 11, the generated paths are due to searching in 8 neighbor nodes around the current

node, where in case 1 the total length of the path from start to destination point is 72.8406 cm, in total

estimated time 11.9063 sec, whereas in case 2, the total length of the path is 70.7401 cm, in total

estimated time 10.0625 sec. The variation in length between the two cases is due to the location change

and shape of the obstacles. Fig. 12, shows the variation of the jointôs angles with respect to time of

manipulator movement from start to destination for both cases.

 (A) (B)

 (C) (D)

FIG. 12. A* PATH PLANNING JOINT VARIATION Ᵽ (A , C) AND Ᵽ (B , D) FOR BOTH CASES.

https://doi.org/10.33103/uot.ijccce.22.4.8

