1 College of Engineering, AL-Iraqia University, Baghdad, Iraq

2 Dept. of Electrical & Electronics Eng., University of Turkish Aeronautical Association, Ankara, Turkey


Electrocardiogram (ECG) examination via computer techniques that involve feature extraction, pre-processing and post-processing was implemented due to its significant advantages. Extracting ECG signal standard features that requires high processing operation level was the main focusing point for many studies. In this paper, up to 6 different ECG signal classes are accurately predicted in the absence of ECG feature extraction. The corner stone of the proposed technique in this paper is the Linear predictive coding (LPC) technique that regress and normalize the signal during the pre-processing phase. Prior to the feature extraction using Wavelet energy (WE), a direct Wavelet transform (DWT) is implemented that converted ECG signal to frequency domain. In addition, the dataset was divided into two parts , one for training and the other for testing purposes Which have been classified in this proposed algorithm using support vector machine (SVM). Moreover, using MIT AI2 Companion was developed by MIT Center for Mobile Learning, the classification result was shared to the patient mobile phone that can call the ambulance and send the location in case of serious emergency. Finally, the confusion matrix values are used to measure the proposed classification performance. For 6 different ECG classes, an accuracy ration of about 98.15% was recorded. This ratio became 100% for 3 ECG signal classes and decreases to 97.95% by increasing ECG signal to 7 classes.